next up previous contents index
Next: Roothan Equations Up: Molecules Previous: Molecular Potential Energy   Contents   Index

Hartree-Fock for Molecules

We now discuss a method to calculate molecular orbitals within the Hartree-Fock method. Let us start from Eq. (IV.3.27),
$\displaystyle \left(\hat{H^0} + \hat{J}-\hat{K}\right)\vert \nu_{j}\rangle$ $\displaystyle =$ $\displaystyle \varepsilon_j\vert \nu_{j}\rangle$ (4.1)
$\displaystyle \langle \mu \vert\hat{J} \vert\nu_j\rangle$ $\displaystyle \equiv$ $\displaystyle \sum_i\langle \mu \nu_i \vert U \vert\nu_i \nu_j\rangle,\quad
\la...
...ert\nu_j\rangle \equiv \sum_i\langle \mu \nu_i \vert U \vert\nu_j \nu_i\rangle,$  

and assume a closed shell situation and a Hamiltonian \bgroup\color{col1}$ \hat{H^0}+U$\egroup which is diagonal in spin-space, i.e. does not flip the spin. The counter \bgroup\color{col1}$ j$\egroup runs from \bgroup\color{col1}$ 1$\egroup to \bgroup\color{col1}$ 2N$\egroup, there are \bgroup\color{col1}$ N$\egroup orbitals with spin up and \bgroup\color{col1}$ N$\egroup orbitals with spin down. The index \bgroup\color{col1}$ j$\egroup thus runs like
$\displaystyle j=1\uparrow,1\downarrow,2\uparrow,2\downarrow,...,N\uparrow,N\downarrow.$     (4.2)

We write
$\displaystyle \psi_{\nu_{j=2k-1}} \equiv \psi_k \vert\uparrow\rangle,\quad \psi_{\nu_{j=2k}} \equiv \psi_k \vert\downarrow\rangle,$     (4.3)

because \bgroup\color{col1}$ j=2k$\egroup, \bgroup\color{col1}$ k=1,...,N$\egroup corresponds to spin-orbitals with spin \bgroup\color{col1}$ \downarrow$\egroup and \bgroup\color{col1}$ j=2k-1$\egroup, \bgroup\color{col1}$ k=1,...,N$\egroup corresponds to spin-orbitals with spin \bgroup\color{col1}$ \uparrow$\egroup. Use the Fock operator
$\displaystyle {\mathcal F} \equiv \hat{H}^0 + \hat{J}-\hat{K}$     (4.4)

and let us, for example, set \bgroup\color{col1}$ j=2k-1$\egroup to obtain
$\displaystyle {\mathcal F} \vert \psi_{k}\rangle \otimes \vert\uparrow\rangle$ $\displaystyle =$ $\displaystyle \varepsilon_{k\uparrow} \vert\psi_{k}\rangle\otimes \vert\uparrow \rangle$ (4.5)

and expand the orbital wave function as
$\displaystyle ($MO$\displaystyle )\quad \psi_{k} = \sum_{l=1}^M c_{lk} \phi_l,\quad ($LCAO$\displaystyle )$     (4.6)

with \bgroup\color{col1}$ l=1,...,M$\egroup given atomic orbitals. Inserting yields
$\displaystyle \langle \uparrow \vert\otimes \langle \phi_{l'}\vert {\mathcal F}
\vert \sum_{l=1}^M c_{lk} \vert\phi_{l}\rangle
\otimes \vert\uparrow\rangle$ $\displaystyle =$ $\displaystyle \varepsilon_{k\uparrow} \sum_{l=1}^M c_{lk} \langle \phi_{l'}\vert \phi_l \rangle$  
$\displaystyle \sum_{l=1}^M{\mathcal F}^{\uparrow\uparrow}_{l'l} c_{lk}$ $\displaystyle =$ $\displaystyle \varepsilon_{k\uparrow} \sum_{l=1}^M S_{l'l}c_{lk}$ (4.7)
$\displaystyle S_{l'l}\equiv \langle \phi_{l'}\vert \phi_l \rangle,\quad
{\mathcal F}^{\uparrow\uparrow}_{l'l}$ $\displaystyle \equiv$ $\displaystyle \langle \uparrow \vert\otimes \langle \phi_{l'}\vert {\mathcal F}\vert\phi_{l}\rangle
\otimes \vert\uparrow\rangle.$  



Subsections
next up previous contents index
Next: Roothan Equations Up: Molecules Previous: Molecular Potential Energy   Contents   Index
Tobias Brandes 2005-04-26