next up previous contents index
Next: Example: Two-Level System Up: Time-Dependence in Quantum Mechanics Previous: Time-Dependence in Quantum Mechanics   Contents   Index

Time-evolution with time-independent \bgroup\color{col1}$ H$\egroup

(Set \bgroup\color{col1}$ \hbar=1$\egroup in the following). In this case, the initial value problem
$\displaystyle i \partial_t \vert\Psi(t)\rangle = H\vert\Psi(t)\rangle,\quad
\vert\Psi(t_0)\rangle = \vert\Psi\rangle_0$     (1.6)

is formally solved as
$\displaystyle \vert\Psi(t)\rangle = U(t,t_0)\vert\Psi\rangle_0,\quad U(t,t_0)\equiv
e^{-i H (t-t_0)},\quad t\ge t_0,$     (1.7)

where we introduced the time-evolution operator \bgroup\color{col1}$ U(t,t_0)$\egroup as the exponential of the operator \bgroup\color{col1}$ -iH(t-t_0)$\egroup by the power series
$\displaystyle e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$     (1.8)

Things are simple, however, when we use the solutions of the stationary Schrödinger equation
$\displaystyle H\vert n\rangle = \varepsilon_n \vert n\rangle,$     (1.9)

where the eigenstates \bgroup\color{col1}$ \vert n\rangle$\egroup form a complete basis and one has
$\displaystyle \langle n \vert\Psi(t)\rangle$ $\displaystyle =$ $\displaystyle \sum_m \langle n\vert e^{-i H (t-t_0)}\vert m \rangle
\langle m \vert\Psi\rangle_0$ (1.10)
  $\displaystyle =$ $\displaystyle \sum_m \langle n\vert m \rangle e^{-i \varepsilon_m (t-t_0)}
\langle m \vert\Psi\rangle_0$  
  $\displaystyle =$ $\displaystyle \sum_m \delta_{nm} e^{-i \varepsilon_m (t-t_0)}
\langle m \vert\Psi\rangle_0$  
  $\displaystyle =$ $\displaystyle e^{-i \varepsilon_n (t-t_0)} \langle n \vert\Psi\rangle_0$  
  $\displaystyle \leadsto$ $\displaystyle \vert\Psi(t)\rangle = \sum_n \vert n\rangle
\underline{\langle n ...
...n\rangle
\underline{e^{-i \varepsilon_n (t-t_0)} \langle n \vert\Psi\rangle_0},$  

where the underlined terms are the expansion coefficients of \bgroup\color{col1}$ \vert\Psi(t)\rangle$\egroup in the basis \bgroup\color{col1}$ \{\vert n\rangle \}$\egroup.


next up previous contents index
Next: Example: Two-Level System Up: Time-Dependence in Quantum Mechanics Previous: Time-Dependence in Quantum Mechanics   Contents   Index
Tobias Brandes 2005-04-26