next up previous contents
Next: * Wave packet (20 Up: Fourier Transforms and the Previous: Math: Gauß Integral 2   Contents

Math: Fourier Transform of Gauss Function (20 min)

The Gauss function
$\displaystyle f(x):=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}$     (2)

is a convenient example to discuss properties of the Fourier transform. Show that it can be decomposed into plane waves by
$\displaystyle \tilde{f}(k)$ $\displaystyle =$ $\displaystyle \int_{-\infty}^{\infty}dx {f}(x) e^{-ikx}=e^{-\frac{1}{2}\sigma^2...
...x)=\frac{1}{2\pi}\int_{-\infty}^{\infty}dk e^{-\frac{1}{2}\sigma^2k^2} e^{ikx}.$ (3)

Draw $ f(x)$ and $ \tilde{f}(k)$ for different values of $ \sigma$ and discuss their relation.



Tobias Brandes 2004-02-04