next up previous contents
Next: Energies and Eigenstates II Up: The Infinite Potential Well Previous: The Infinite Potential Well   Contents

Energies and Eigenstates I (10-20 min)

Consider the motion of a particle of mass $ m$ within the interval $ [x_1,x_2]=[0,L], L>0$ between the infinitely high walls of the potential

$\displaystyle V(x)=\left\{ \begin{array}{cc} \infty, & -\infty<x\le 0 \\ 0, & 0<x\le L \\ \infty & L<x< \infty \end{array} \right.$ (7)

Show that the normalized energy eigenstate wave functions and energies are
$\displaystyle \psi_n(x)$ $\displaystyle =$ $\displaystyle \sqrt{\frac{2}{L}}\sin \left(\frac{n\pi x}{L}\right ),\quad
E= E_n= \frac{n^2 \hbar^2 \pi^2}{2mL^2},\quad n=1,2,3,...$ (8)



Tobias Brandes 2004-02-04