next up previous contents
Next: Operators and Measurements in Up: Axioms of Quantum Mechanics Previous: * Expansion into eigenmodes   Contents

* Scalar product (20 min)

a) Use the bra and ket notation to show that for an orthonormal basis $ \{ \vert\psi_n \rangle\}$ and two Hilbert space vectors $ \vert\psi\rangle $ and $ \vert\chi\rangle$, one has
$\displaystyle \langle\psi\vert\chi\rangle=\sum_{n=0}^{\infty}\langle\psi\vert\psi_n\rangle\langle\psi_n\vert\chi\rangle.$     (28)

b) Show that in the case of vectors $ {\bf x}$, $ {\bf y} \in R^d$, this reduces to the standard formula for the scalar product in $ R^d$,

$\displaystyle \langle {\bf x} \vert{\bf y} \rangle =\sum_{i=1}^{d}x_i^*y_i.$

c) Use Eq.(3.28) and Eq.(3.27) to prove

$\displaystyle \frac{\pi^6}{960}= \sum_{k=0}^{\infty} \frac{1}{(2k+1)^6}
$



Tobias Brandes 2004-02-04