next up previous contents
Next: Wave Mechanics Up: Position and Momentum in Previous: Example: Wave packet   Contents

The commutator $ [x,p]$

Position $ x$ and momentum $ p$ are operators in quantum mechanics. Acting on wave functions, the operator product $ xp$ has the property
$\displaystyle \hat{x}\hat{p}\Psi(x)$ $\displaystyle =$ $\displaystyle \frac{\hbar}{i}x\frac{\partial}{\partial x}\Psi(x)
= \frac{\hbar}{i}x\Psi'(x)$  
$\displaystyle \hat{p}\hat{x}\Psi(x)$ $\displaystyle =$ $\displaystyle \frac{\hbar}{i}\frac{\partial}{\partial x}x\Psi(x)
= \frac{\hbar}{i}\left(\Psi(x)+ x\Psi'(x)\right)$ (74)

The result depends on the order of $ \hat{x}$ and $ \hat{p}$: both operators do not commute. One has
$\displaystyle (\hat{x}\hat{p}-\hat{p}\hat{x})\Psi(x)$ $\displaystyle =$ $\displaystyle i\hbar \Psi(x)$ (75)

Comparing both sides, we have the commutation relation
$\displaystyle [\hat{x},\hat{p}]:=\hat{x}\hat{p}-\hat{p}\hat{x}$ $\displaystyle =$ $\displaystyle i\hbar.$ (76)

Here, we have defined the commutator $ [A,B]:=AB-BA$ of two operators $ A$ and $ B$. Generalized to three dimensions with the three components $ \hat{x}_k$ of $ {\bf\hat{x}}$ and $ \hat{p}_k$ of $ {\bf\hat{p}}$, $ k=1,2,3$, one has the canonical commutation relations
$\displaystyle [\hat{x}_k,\hat{p}_l]$ $\displaystyle =$ $\displaystyle i\hbar\delta_{kl}$  
$\displaystyle \delta_{kl}$ $\displaystyle :=$ $\displaystyle 1,\quad k=l,$   and 0 else$\displaystyle .$ (77)


next up previous contents
Next: Wave Mechanics Up: Position and Momentum in Previous: Example: Wave packet   Contents
Tobias Brandes 2004-02-04