next up previous contents
Next: The commutator Up: Position and Momentum in Previous: Expectation values in quantum   Contents

Example: Wave packet

We consider the wave function (wave packet, see above)
$\displaystyle \Psi(x)= \frac{1}{\sqrt{\sqrt{\pi a^2}}}
\exp{\left(-\frac{x^2}{2a^2}\right)}.$     (70)

1. We calculate

$\displaystyle \langle x \rangle =\int_{-\infty}^{\infty} dx \Psi^*({x},t) x \Ps...
...t_{-\infty}^{\infty} dx \Psi^*({x},t) \frac{\hbar \partial_x}{i} \Psi({x},t)=0.$     (71)

2. We calculate (see problem sheet 1)

$\displaystyle \langle p^2\rangle$ $\displaystyle =$ $\displaystyle {{\hbar^2}\over{2a^2}},\quad
\langle x^2\rangle = {{a^2}\over 2}.$ (72)

By this we obtain for the mean square deviations of the position $ x$ and the momentum $ p$,

$\displaystyle {\Delta p^2 = {\langle p^2\rangle - \langle p\rangle^2} =
{\langl...
...gle x^2\rangle - \langle x\rangle^2} =
{\langle x^2\rangle } = {a^2\over{2}}. }$

The product of the two is just

$\displaystyle \Delta x^2 \cdot\Delta p^2
={\hbar^2\over 4}. $

The particular case of our wave packet fulfills the Heisenberg uncertainty relation
$\displaystyle \Delta x^2 \cdot\Delta p^2 \ge {\hbar^2\over 4}.$     (73)

with the $ =$-sign. We will later prove that there are Heisenberg uncertainty relations for arbitrary pairs of operators and not only for $ x$ and $ p$.


next up previous contents
Next: The commutator Up: Position and Momentum in Previous: Expectation values in quantum   Contents
Tobias Brandes 2004-02-04