next up previous contents
Next: The Potential Well Up: The Infinite Potential Well Previous: Wave functions and eigenenergies   Contents

The Hilbert space $ {\cal H}$ of wave functions

We have seen that the wave functions with fixed energy $ E$ of a particle of mass $ m$ in an infinitely high potential well of width $ L$ are given by
$\displaystyle \psi_n(x)$ $\displaystyle =$ $\displaystyle \sqrt{\frac{2}{L}}\sin \left(\frac{n\pi x}{L}\right ),\quad
E= E_n= \frac{n^2 \hbar^2 \pi^2}{2mL^2},\quad n=1,2,3,...$ (100)

1. We have omitted the arbitrary phase factor $ e^{i\varphi}$ here as discussed above.

2. The index $ n$ is called quantum number, it labels the possible solutions of the stationary Schrödinger equation

$\displaystyle \hat{H}\psi_n(x)=E_n\psi_n(x).$     (101)

As in linear algebra, the $ E_n$ are called eigenvalues (eigenvalues of the energy) and the $ \psi_n(x)$ are called eigenvectors (eigenfunctions) of the Hamiltonian $ {\hat{H}}$.

3. We only have positive integers $ n$: negative integers $ -\vert n\vert$ would lead to solutions $ \psi_{-\vert n\vert}(x)=-\psi_n(x)$ which are just the negative of the wave functions with positive $ n$. They describe the same state of the particle which is unique up to a phase $ e^{i\varphi}$ (for example $ e^{i\varphi}=-1$) anyway. $ \psi_{-\vert n\vert}(x)$ is linear dependent on $ \psi_{n}(x)$.

4. The eigenvectors of $ \hat{H}$, i.e. the functions $ \psi_n(x)$, form the basis of a linear vector space $ {\cal H}$ of functions $ f(x)$ defined on the interval $ [0,L]$ with $ f(0)=f(L)=0$. The $ \psi_n(x)$ form an orthonormal basis:

$\displaystyle \int_0^Ldx \vert\psi_n(x)\vert^2=1,\quad \int_0^Ldx \psi_n^*(x)\psi_m(x)=\delta_{nm}.$     (102)

(We can omit the $ *$ here because the $ \psi_n$ are real). Note that the orthonormal basis is of infinite dimension because there are infinitely many $ n$. The infinite dimension of the vector space (function space) $ {\cal H}$ is the main difference to ordinary, finite dimensional vector spaces like the $ R^3$.

5. Any wave function $ \psi(x) \in {\cal H}$ (like any arbitrary vector in, e.g., the vector space $ R^3$) can be expanded into a linear combination of basis `vectors', i.e. eigenfunctions $ \psi_n(x)$:

$\displaystyle \psi(x)=\sum_{n=1}^{\infty}c_n\psi_n(x),\quad c_n=\int_0^Ldx \psi(x)\psi_n(x).$     (103)

A vector space with these properties is called a Hilbert space. The Hilbert space is the central mathematical object of quantum theory.


Example vectors and matrices Particle in Quantum Well
vector $ {\bf x}$ wave function $ \psi(x)$
space vector space Hilbert space
linear operator matrix $ A=\left( \begin{array}{ll} 0&1\\ 1&0 \end{array}\right)$ Hamiltonian $ H_{\rm well}$
eigenvalue problem $ A{\bf x} = \lambda {\bf x} $ $ H_{\rm well} \psi_n = E_n \psi_n$
eigenvalue $ \lambda_1 = 1,\lambda_2=-1 $ $ E_n =\frac{n^2\pi^2\hbar^2}{2mL},n=1,2,3...$
eigenvector $ {\bf x}_{1,2}=\frac{1}{\sqrt{2}}\left( \begin{array}{l} 1\\ \pm 1 \end{array}\right) $ wave function $ \psi_n(x)=\sqrt{\frac{2}{L}}\sin \left(\frac{n\pi x}{L}\right )$
scalar product $ \langle {\bf x} \vert {\bf y} \rangle \equiv \sum_{n=1}^2 x_n^*y_n$ $ \langle \psi \vert \phi \rangle \equiv \int_0^Ldx \psi^*(x)\phi(x)$
orthogonal basis $ \langle {\bf e}_n \vert {\bf e}_m \rangle=\delta_{nm}$ $ \langle \psi_n \vert \psi_m \rangle =\delta_{nm}$
dimension $ 2$ $ \infty$
completeness $ {\bf x}=\sum_{n=1}^2\langle {\bf e}_n\vert{\bf x} \rangle{\bf e}_n$ $ \psi =\sum_{n=1}^{\infty}\langle \psi_n \vert \psi \rangle \psi_n$
vector components $ {\bf x} = (\langle {\bf e}_1\vert{\bf x} \rangle,\langle {\bf e}_2\vert{\bf x} \rangle)$ $ \psi = (\langle \psi_1 \vert \psi \rangle, \langle \psi_2 \vert \psi \rangle,...)$

We will explain this table in greater detail in the next chapter where we turn to the foundations of quantum mechanics.


next up previous contents
Next: The Potential Well Up: The Infinite Potential Well Previous: Wave functions and eigenenergies   Contents
Tobias Brandes 2004-02-04