next up previous contents
Next: The parity Up: The Potential Well Previous: The Potential Well   Contents

Wave functions and energy eigenvalues for $ E<0$

Our second one-dimensional problem is the motion of a particle in a potential well of finite depth $ V$ and width $ 2a>0$, i.e. a potential

$\displaystyle V(x)=\left\{ \begin{array}{cc} 0, & -\infty<x\le -a \\ -V<0, & -a <x\le a \\ 0 & a < x < \infty \end{array} \right.$ (104)

According to our general equation, the wave functions for energies $ -\vert V\vert< E =-\vert E\vert<0$ must have the form

$\displaystyle \psi(x)=\left\{ \begin{array}{cc} a_1e^{\kappa x}+b_1e^{-\kappa x...
...<x\le a \\ a_3e^{\kappa x}+b_3e^{-\kappa x}, & a <x< \infty \end{array} \right.$ (105)

where
$\displaystyle k = \sqrt{({2m}/{\hbar^2})\left(-\vert E\vert+V\right)},\quad \kappa = \sqrt{({2m}/{\hbar^2}) \vert E\vert}.$     (106)

The wave function has to vanish for $ x\to \pm \infty$ which can only be fulfilled if $ b_1=a_3=0$.



Tobias Brandes 2004-02-04