next up previous contents
Next: Math: Examples of Hilbert Up: Axioms of Quantum Mechanics Previous: Recalling our axioms   Contents

Math: The Hilbert Space

We start with a few mathematical terms that are necessary for the definition of a Hilbert space.

Def.: A norm $ \Vert..\Vert$ is a mapping of a complex vector space $ V$ into the real numbers $ R_+$, such that for elements $ \psi,\phi \in V$

$\displaystyle \Vert\psi\Vert$ $\displaystyle \ge$ $\displaystyle 0,\quad \Vert\psi\Vert =0 \leftrightarrow \psi=0$  
$\displaystyle \Vert c\psi\Vert$ $\displaystyle =$ $\displaystyle \vert c\vert \Vert\psi\Vert,\quad c\in C$  
$\displaystyle \Vert\psi+\phi\Vert$ $\displaystyle \le$ $\displaystyle \Vert\psi\Vert+\Vert\phi\Vert$ (166)

Def.: A scalar product is a mapping of a pair of vectors $ \psi, \phi$ to a complex number $ \langle \psi\vert \phi\rangle$ such that for arbitrary $ \psi,\phi,\chi\in V$

$\displaystyle \langle \psi\vert \psi\rangle$ $\displaystyle \ge$ 0  
$\displaystyle \langle \psi\vert c\phi\rangle$ $\displaystyle =$ $\displaystyle c \langle \psi\vert \phi\rangle , \quad c \in C$  
$\displaystyle \langle \psi +\phi \vert \chi \rangle$ $\displaystyle =$ $\displaystyle \langle \psi\vert \chi\rangle + \langle \phi\vert \chi\rangle$  
$\displaystyle \langle \psi\vert \phi\rangle = \langle \phi\vert \psi\rangle^*$ $\displaystyle =:$ $\displaystyle \overline{\langle \phi\vert \psi\rangle }$ (167)

Def.: A vector space with scalar product and norm $ \Vert\psi\Vert=\sqrt{\langle \psi\vert \psi\rangle }$ is called unitary space.

Def.: A sequence $ \{\psi_n\}$ in a unitary space is called Cauchy sequence, if with all real number $ \varepsilon>0$ there is an integer $ N(\varepsilon)$ such that for all $ n,m>N(\varepsilon)$, $ \langle \psi_n\vert \psi_m\rangle <\varepsilon)$ holds.

Def.: A unitary space X is called complete, if each Cauchy sequence in X converges to a vector $ \psi \in X$.

Def.: A Hilbert space is a complete unitary space.


next up previous contents
Next: Math: Examples of Hilbert Up: Axioms of Quantum Mechanics Previous: Recalling our axioms   Contents
Tobias Brandes 2004-02-04