next up previous contents
Next: The Hilbert space Up: Math: Examples of Hilbert Previous: Math: Examples of Hilbert   Contents

The $ d$-dimensional Hilbert space $ {\cal H} = R^d$

This vector space has a basis of unit vectors $ {\bf e}_n$,
$\displaystyle {\bf e}_1 =
\left( \begin{array}{l}
1\\
0\\
..\\
0
\end{array}...
...uad ,
{\bf e}_d =
\left( \begin{array}{l}
0\\
0\\
..\\
1
\end{array}\right).$     (168)

Vectors are columns and in printed text written as the transposed (symbolized by $ ^T$ that is sometimes omitted) of lines $ {\bf x}=(x_1,...,x_d)^T$. The scalar product of two vectors $ {\bf x}=(x_1,...,x_d)^T,
{\bf y}= (y_1,...,y_d)^T$, is $ \langle {\bf x} \vert {\bf y} \rangle = \sum_{n=1}^d x_n y_n$. Each vector $ {\bf x}=(x_1,...x_d)^T \in R^d$ can be decomposed into

$\displaystyle {\bf x}=\sum_{n=1}^d\langle {\bf e}_n\vert{\bf x} \rangle{\bf e}_n.$ (169)



Tobias Brandes 2004-02-04