next up previous contents
Next: Examples for Expectation Values Up: Operators and The Two-Level-System Previous: Operators and The Two-Level-System   Contents

Operators

Quantum mechanics is a theory of probabilities and expectation values for the outcomes of experiments. We have already learned how to use the wave function to calculate expectation values of the position $ {\bf x}$, the momentum $ {\bf p}$, or any function of these, cf. Eq. (1.64).

We now slightly generalize our axiom 2:

Axiom 2a: In quantum mechanics, physical quantities like position, momentum, angular momentum, kinetic energy, total energy etc. correspond to linear operators $ A$ that act on Hilbert space vectors. The position $ {\bf x}$ corresponds to the operator `multiplication with $ {\bf\hat{x}}$', the momentum $ {\bf p}$ to the operator $ -i\hbar \nabla$. Any other quantity depending on $ {\bf x}$ and $ {\bf p}$ becomes an operator $ \hat{O}({\bf\hat{x}},{\bf\hat{p}})$ by this correspondence principle $ {\bf x}\to {\bf\hat{x}}$ and $ {\bf p} \to -i\hbar \nabla$. The commutation relation

$\displaystyle [\hat{x}_k,\hat{p}_l]$ $\displaystyle =$ $\displaystyle i\hbar\delta_{kl}$  
$\displaystyle \delta_{kl}$ $\displaystyle :=$ $\displaystyle 1,\quad k=l,$   and 0 else (180)

holds.

Expectation values at time $ t$ of any operator $ A$ for a quantum mechanical system described by a vector $ \vert\psi(t)\rangle$ in a Hilbert space (for example, a wave function $ \Psi({\bf x},t)$), are defined by applying $ A$ on $ \vert\Psi(t)\rangle$ and calculating the Hilbert space scalar product

$\displaystyle \langle A \rangle_t := \frac{\langle \Psi(t)\vert A\vert\Psi(t) \rangle_t}{\langle \Psi(t)\vert\Psi(t)\rangle}.$     (181)


next up previous contents
Next: Examples for Expectation Values Up: Operators and The Two-Level-System Previous: Operators and The Two-Level-System   Contents
Tobias Brandes 2004-02-04