next up previous contents
Next: Eigenvalues and Measurement Up: Operators and Measurements Previous: Operators and Measurements   Contents

Math: Linear Operators

Def.: A linear Operator $ A$ acting on vectors $ \vert\psi\rangle$, $ \vert\phi\rangle$ of a Hilbert space $ {\cal H}$ has the property

$\displaystyle A[\vert\psi\rangle + c \vert\phi\rangle] = A\vert\psi\rangle + c A\vert\phi\rangle, \quad c \in C.$     (190)

Examples for linear operators: 1. $ (n \times n)$-matrices $ A$, acting on vectors $ {\bf x } \to A({\bf x})$ (linear mappings)

2. The momentum operator $ \hat{{\bf p}}$, acting on a Hilbert space of differentiable functions as

$\displaystyle \hat{{\bf p}}: f\to \hat{{\bf p}}f,
\quad \hat{{\bf p}}f({\bf x})=\frac{\hbar}{i}\nabla f({\bf x})
$

Example for a nonlinear operator: the operator that squares a function $ f$, $ A: f \to f^2$.

Expectation values of observables $ A$ in particular should be real numbers because they represent the outcome of an average over many measurements. We have to introduce one additional definition to clarify this concept:

Def.: The adjoint operator $ A^{\dagger}$ of a linear operator $ A$ acting on a Hilbert space $ {\cal H}$ is defined by

$\displaystyle \langle \psi\vert A\phi\rangle = \langle A^{\dagger}\psi\vert\phi\rangle, \quad \forall \phi,\psi\in {\cal H}.$ (191)

Def.: A linear operator $ A$ on the Hilbert space $ {\cal H}$ is called hermitian, if the following relation holds:

$\displaystyle \langle A\psi\vert\phi\rangle = \langle \psi\vert A\phi\rangle, \quad \forall \phi,\psi\in {\cal H}.$ (192)

Examples:

1. For complex two-by- two matrices

$\displaystyle A =
\left( \begin{array}{cc}
a & b\\
c & d
\end{array}\right) \...
...dagger} =
\left( \begin{array}{cc}
a^* & c^*\\
b^* & d^*
\end{array}\right).
$

This means that the adjoint matrix $ A^{\dagger}$ of a given matrix $ A$ is given by the transposed conjugate complex of $ A$, i.e. $ A^{\dagger}=(A^*)^T$.

2. For complex two-by-two matrices

$\displaystyle A =
\left( \begin{array}{cc}
a & b\\
c & d
\end{array}\right) = A^{\dagger} \leadsto
a=a^*, d=d^*, b^*=c.
$

3. The momentum operator $ \hat{p}$ in one dimension, acting on wave functions $ \psi(x),\phi(x), x\in R$ that vanish at $ x\to \pm \infty$, is hermitian:

$\displaystyle \langle \psi \vert \hat{p}\phi \rangle = -i\hbar \int dx \psi^*(x...
...= \int dx [-i\hbar \psi'(x)]^* \phi(x) = \langle \hat{p}\psi \vert\phi\rangle.
$

The expectation values of hermitian operators $ A$ in any Hilbert space state vector $ \psi$ are real indeed because

$\displaystyle \langle A\rangle$ $\displaystyle =$ $\displaystyle \langle \psi\vert A\psi\rangle =
\langle A\psi\vert\psi\rangle = \langle \psi\vert A\psi\rangle^*=\langle A\rangle^*.$ (193)

This gives rise to the second part of axiom 2:

Axiom 2b: Physical observable quantities correspond to hermitian linear operators $ A$ acting on Hilbert space vectors.

Furthermore, the following theorem holds:

Theorem: The eigenvalues of hermitian operators $ A$ are real. This is because

$\displaystyle A\vert\psi\rangle =\lambda \vert\psi\rangle \leadsto \lambda = \frac{\langle \psi \vert A\vert\psi\rangle }{\langle \psi\vert\psi\rangle}
\in R.$     (194)

This leads us to the most central part of ours axioms:


next up previous contents
Next: Eigenvalues and Measurement Up: Operators and Measurements Previous: Operators and Measurements   Contents
Tobias Brandes 2004-02-04