next up previous contents
Next: Energy Measurement in the Up: Energy Measurements Previous: Energy Measurements   Contents

Eigenstates of the Two-Level System

In the previous section we had seen that the total energy of the two tunnel-coupled wells is represented by the total Hamiltonian $ \hat{H}$,

\begin{displaymath}\hat{H}=\left(
\begin{array}{cc}
\varepsilon_L & T\\
T^* & \varepsilon_R
\end{array}\right).\end{displaymath}     (203)

If we measure the energy, the possible outcomes are the eigenvalues of the corresponding observable, that is the total Hamiltonian $ \hat{H}$. We therefore have to find the two eigenvectors $ \vert{i}\rangle$ and eigenvalues $ \varepsilon_{i}$ of $ \hat{H}$, that is the solutions of

$\displaystyle \hat{H}\vert{i}\rangle = \varepsilon_{i} \vert{i}\rangle,\quad i=1,2.$     (204)

The result is
$\displaystyle \vert 1\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{N_1}\left[-2T \vert L\rangle + (\Delta +\varepsilon) \ve...
...quad \varepsilon_1=\frac{1}{2}\left(\varepsilon_L+\varepsilon_R - \Delta\right)$  
$\displaystyle \vert 2\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{N_2}\left[\phantom{-}2T \vert L\rangle + (\Delta -\varep...
...quad \varepsilon_2=\frac{1}{2}\left(\varepsilon_L+\varepsilon_R + \Delta\right)$  
$\displaystyle \varepsilon$ $\displaystyle :=$ $\displaystyle \varepsilon_L-\varepsilon_{R},\quad
\Delta:=\varepsilon_2-\varepsilon_1=\sqrt{\varepsilon^2+4\vert T\vert^2}$  
$\displaystyle N_{1,2}$ $\displaystyle :=$ $\displaystyle \sqrt{4\vert T\vert^2+(\Delta\pm \varepsilon)^2}.$ (205)

Figure: New hybridized basis states of the double well potential.
\begin{figure}\unitlength1cm
\begin{picture}(12,5)
\epsfxsize =6cm
\put(0.0,0.5)...
...}
\epsfxsize =6cm
\put(6.5,0.5){\epsfbox{dwell4b.eps}}
\end{picture}\end{figure}

Discussion:

1. The eigenvectors $ \vert 1\rangle$ and $ \vert 2\rangle$ form a new orthonormal basis of the Hilbert space $ {\cal H} = C^2$ (the $ N_{1,2}$ are normalization factors).

2. The level splitting $ \Delta$ gives the energy difference between the new eigenenergies. It increases with increasing $ \vert T\vert$.

3. For $ \varepsilon=0$, we find

$\displaystyle \vert 1\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\left[-(T/\vert T\vert) \vert L\rangle + \vert R\rangle \right]$  
$\displaystyle \vert 2\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\left[(T/\vert T\vert) \vert L\rangle + \vert R\rangle \right].$ (206)

Remember that $ T$ is a complex quantity. If we chose $ T$ real and negative, i.e. $ T=-\vert T\vert$, we find
$\displaystyle \varepsilon_L=\varepsilon_R=:\varepsilon_0,\quad
T=-\vert T\vert\leadsto \vert 1\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\left[\vert L\rangle + \vert R\rangle \right],\quad
\varepsilon_1=\varepsilon_0 - \vert T\vert$  
$\displaystyle \vert 2\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\left[ -\vert L\rangle + \vert R\rangle \right],\quad
\varepsilon_2= \varepsilon_0 + \vert T\vert.$ (207)

In particular, the symmetric linear combination $ \vert 1\rangle$ now has a lower energy than the antisymmetric combination $ \vert 2\rangle$: this is what we had found in the original double quantum well problem.


next up previous contents
Next: Energy Measurement in the Up: Energy Measurements Previous: Energy Measurements   Contents
Tobias Brandes 2004-02-04