next up previous contents
Next: Harmonic Oscillator Hilbert Space Up: The Hilbert space of Previous: The Hilbert space of   Contents

Infinite Well Hilbert Space

Let us recall what we know from the infinite potential well:

The eigen functions $ \phi_n(x)$ of the infinite potential well form the basis of a linear vector space $ {\cal H}_{well}$ of functions $ f(x)$ defined on the interval $ [0,L]$ with $ f(0)=f(L)=0$. The $ \phi_n(x)$ form an orthonormal basis:

$\displaystyle \int_0^Ldx \vert\phi_n(x)\vert^2=1,\quad \int_0^Ldx \phi_n^*(x)\phi_m(x)=\delta_{nm}.$     (249)

(We can omit the $ *$ here because the $ \phi_n$ are real). Note that the orthonormal basis is of infinite dimension because there are infinitely many $ n$. The infinite dimension of the vector space (function space) $ {\cal H}_{well}$ is the main difference to ordinary, finite dimensional vector spaces like the $ R^3$. Any function $ f(x) \in {\cal H}_{well}$ (like any arbitrary vector in, e.g., the vector space $ R^3$) can be expanded into a linear combination of basis `vectors', i.e. eigen functions $ \phi_n(x)$:
$\displaystyle f(x)=\sum_{n=1}^{\infty}c_n\phi_n(x),\quad c_n=\int_0^Ldx f(x)\phi_n(x).$     (250)

We start to count the eigenstates from $ n=1$.


next up previous contents
Next: Harmonic Oscillator Hilbert Space Up: The Hilbert space of Previous: The Hilbert space of   Contents
Tobias Brandes 2004-02-04