next up previous contents
Next: The Angular Part Up: Spherical Symmetric Potentials in Previous: The Potential   Contents

Polar Coordinates

It is useful to introduce polar coordinates
$\displaystyle x=r\sin \theta \cos \varphi,\quad y=r\sin \theta \sin \varphi,\quad z=r\cos \theta$     (282)

and to re-write the Laplacian in polar coordinates,
$\displaystyle \Delta \Psi= \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2
\f...
...ight)
+\frac{1}{\sin^2 \theta}\frac{\partial^2\Psi}{\partial \varphi^2}\right].$     (283)

The wave function $ \Psi=\Psi(r,\theta,\varphi)$ now depends on polar coordinates. We multiply the Schrödinger equation with $ r^2$,
$\displaystyle \frac{\partial}{\partial r}\left(r^2
\frac{\partial \Psi}{\partia...
...ht)
+\frac{1}{\sin^2 \theta}\frac{\partial^2\Psi}{\partial \varphi^2}\right]=0,$      

which can be written with two operators $ \hat{h}$ and $ \hat{\Omega}$ as
$\displaystyle \hat{h}\Psi + \hat{\Omega}\Psi$ $\displaystyle =$ 0  
$\displaystyle \hat{h}\Psi$ $\displaystyle :=$ $\displaystyle \frac{\partial}{\partial r}\left(r^2
\frac{\partial \Psi}{\partial r}\right)+\frac{2m}{\hbar^2}r^2[E-V(r)]\Psi$  
$\displaystyle \hat{\Omega}\Psi$ $\displaystyle :=$ $\displaystyle \left[\frac{1}{\sin \theta}\frac{\partial}{\partial \theta}
\left...
...ight)
+\frac{1}{\sin^2 \theta}\frac{\partial^2\Psi}{\partial \varphi^2}\right].$  

The separation of $ r$-dependences and angle dependences suggests a separation Ansatz, that is a wave function of the form
$\displaystyle \Psi(r,\theta,\varphi) = R(r)Y(\theta,\varphi).$     (284)

Then, $ \hat{h}\Psi + \hat{\Omega}\Psi =0$ means
$\displaystyle \hat{h}R(r)Y(\theta,\varphi) + \hat{\Omega}R(r)Y(\theta,\varphi)$ $\displaystyle =$ $\displaystyle Y(\theta,\varphi)\hat{h}R(r) + R(r)\hat{\Omega}Y(\theta,\varphi)=0$  
$\displaystyle \leadsto \frac{1}{R(r)}\hat{h}R(r)$ $\displaystyle =$ $\displaystyle - \frac{1}{Y(\theta,\varphi)}\hat{\Omega}Y(\theta,\varphi)=:-c.$ (285)

Here, we have used the fact that $ \hat{h}$ performs a differentiation with respect to $ r$ so that $ Y(\theta,\varphi)$ can be pulled in front of it. In the same way, $ \hat{\Omega}$ performs a differentiation with respect to $ \theta$ and $ \varphi$ only so that $ R(r)$ can be pulled in front of it. We thus have succeeded to completely seperate the radial part $ R(r)$ from the angular part $ Y(\theta,\varphi)$. The left side in (4.62) depends only on $ r$, the right side only on $ \theta,\varphi$ whence both side must be a constant that we have denoted for convenience as $ -c$ here.

We first investigate the angular part as it can be solved exactly. The radial part can not be solved exactly for an arbitrary potential $ V(r)$.


next up previous contents
Next: The Angular Part Up: Spherical Symmetric Potentials in Previous: The Potential   Contents
Tobias Brandes 2004-02-04