next up previous contents index
Next: Excited states Up: Perturbation theory in Previous: Perturbation theory in   Contents   Index

Ground state

The unperturbed ground state has \bgroup\color{col1}$ \vert nlm\rangle=\vert 100\rangle$\egroup and \bgroup\color{col1}$ \vert n'l'm'\rangle=\vert 100\rangle$\egroup, i.e. \bgroup\color{col1}$ \alpha=\beta$\egroup with a symmetrical orbital wave function \bgroup\color{col1}$ \phi_{\alpha\alpha}^{+}({\bf r}_1,{\bf r}_2)=
\phi_{100}({\bf r}_1)\phi_{100}({\bf r}_2)$\egroup and a singlet spinor \bgroup\color{col1}$ \vert S\rangle$\egroup. The energy to first order in \bgroup\color{col1}$ U$\egroup therefore is
$\displaystyle E^{(1)}_{\alpha\alpha}$ $\displaystyle =$ $\displaystyle E^{(0)}_{\alpha\alpha} + A_{\alpha\alpha},\alpha=(100)$ (3.3)
$\displaystyle A_{\alpha\alpha}$ $\displaystyle =$ $\displaystyle \int \int d{\bf r}_1 d{\bf r}_2
\vert\phi_{100}({\bf r}_1)\vert^2 U\left(\vert{\bf r}_1 -{\bf r}_2\vert\right) \vert\phi_{100}({\bf r}_2)\vert^2.$ (3.4)

Calculation of \bgroup\color{col1}$ A$\egroup yields
$\displaystyle E^{(1)}_{100,100}$ $\displaystyle =$ $\displaystyle E^{(0)}_1 + E^{(0)}_1 + A_{100,100}
= 2 \left( -\frac{1}{2}\frac{...
...4\pi\varepsilon_0 a_0} \right) +
\frac{5}{8} \frac{Ze^2}{4\pi\varepsilon_0a_0}.$ (3.5)

For \bgroup\color{col1}$ Z=2$\egroup, one has \bgroup\color{col1}$ 2 E^{(0)}_1=-108.8$\egroupeV and \bgroup\color{col1}$ A_{100,100}=34$\egroupeV such that \bgroup\color{col1}$ E^{(1)}_{100,100}=-74.8$\egroupeV.

Exercise: Calculate the integral leading to the result Eq. (III.3.5). Solution hints are given in Gasiorowicz [3].



Tobias Brandes 2005-04-26