next up previous contents index
Next: Master Equation IV: Phase Up: Derivation of Master equation Previous: `Secular approximation'   Contents   Index

$ x$-$ p$ Representation

We now can write
$\displaystyle D$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\left(\left(c_-+c_+\right)x + i \left(c_--c_+\r...
...ega)}{\sqrt{2}} \left(x \coth \left(\frac{\beta\Omega}{2}\right) + i p \right),$  

where we again used $ \coth \left({\beta\Omega}/{2}\right) = 1+2n_B(\Omega).$ Using $ E=D^{\dagger}$, one obtains the Master equation from the Non-RWA Model in secular approximation,
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
\frac{d}{dt}\rho&=& -i[H...
...rho(\Omega)}{2}
\left(xp\rho -\rho px -p\rho x+ x\rho p\right).
\end{array}$\ }$     (67)



Tobias Brandes 2004-02-18