next up previous contents index
Next: `Secular approximation' Up: Master Equation II: the Previous: Validity of Markov Assumption   Contents   Index


Derivation of Master equation (non-RWA), secular approximation

We now move on to derive the Master equation for the non-RWA model. Using $ \tilde{S}(t)=ae^{-i\Omega t} +a^{\dagger}e^{i\Omega t}$, we have
$\displaystyle D$ $\displaystyle \equiv$ $\displaystyle \int_0^{\infty}d \tau C(\tau)\tilde{S}(-\tau)=
\int_0^{\infty}d \tau C(\tau) \left[ae^{i\Omega \tau} +a^{\dagger}e^{-i\Omega \tau}\right]$  
  $\displaystyle =$ $\displaystyle \hat{C}(-i\Omega) a + \hat{C}(i\Omega) a^{\dagger}\equiv c_-a + c_+a^{\dagger}$  
$\displaystyle E$ $\displaystyle \equiv$ $\displaystyle \int_0^{\infty}d \tau C^*(\tau)\tilde{S}(-\tau)=
\int_0^{\infty}d \tau C^*(\tau)\tilde{S}^{\dagger}(-\tau)=D^{\dagger}$  
  $\displaystyle =$ $\displaystyle c_+^*a + c_-^*a^{\dagger},$ (63)

where we used the Laplace transform of $ C(\tau)$,
$\displaystyle \hat{C}(z)\equiv \int_{0}^{\infty}d\tau e^{-z\tau} C(\tau).$     (64)



Subsections

Tobias Brandes 2004-02-18