next up previous contents index
Next: Power-Zienau-Woolley Transformation Up: The Hamiltonian Previous: The Hamiltonian   Contents   Index

Coulomb Gauge

The Coulomb gauge theory is obtained with the choice
$\displaystyle {\bf g}_\perp({\bf r},{\bf r}') =0,\quad \div\mathbf{A}=0.$     (3.9)

The Hamiltonian in the Coulomb gauge then is
$\displaystyle {\mathcal H}_{\rm Coul} (t)$ $\displaystyle =$ $\displaystyle H(t) + H_{\rm rad}$  
$\displaystyle H_{\rm rad}$ $\displaystyle =$ $\displaystyle \frac{1}{2}\int d{\bf r} \left[ \varepsilon_0 \mathbf{E}_\perp^2 + \mu_0^{-1} \mathbf{B}^2\right]$ (3.10)
$\displaystyle H(t)$ $\displaystyle =$ $\displaystyle \sum_n \frac{1}{2m_n} \left[ {\bf p}_n - q_n \mathbf{A}({\bf r}_n,t)\right] + V_{\rm Coul},\quad
\div\mathbf{A}=0.$ (3.11)

without the polarization terms \bgroup\color{col1}$ V_{\bf EP}$\egroup and \bgroup\color{col1}$ V_{\bf gg}$\egroup.



Tobias Brandes 2005-04-26