next up previous contents index
Next: Second Order Perturbation Theory Up: Example: Two-Level System Previous: Example: Two-Level System   Contents   Index

Exact solution

We find the exact eigenvectors \bgroup\color{col1}$ \vert{i}\rangle$\egroup and eigenvalues \bgroup\color{col1}$ \varepsilon_{i}$\egroup of \bgroup\color{col1}$ {\mathcal H}_{\rm TLS}$\egroup, that is the solutions of
$\displaystyle {\mathcal H}_{\rm TLS}\vert{i}\rangle = \varepsilon_{i} \vert{i}\rangle,\quad i=\pm ,$     (2.4)

by diagonalisation of the two-by-two matrix Eq. (II.2.3). The eigenstates \bgroup\color{col1}$ \vert\pm\rangle$\egroup and eigenvalues \bgroup\color{col1}$ \varepsilon_{\pm}$\egroup of \bgroup\color{col1}$ {\mathcal H}_{\rm TLS}$\egroup are
$\displaystyle \vert\pm \rangle$ $\displaystyle =$ $\displaystyle \frac{1}{N_{\pm}}\left[
\pm 2T_c \vert L\rangle + (\Delta \mp \va...
...t R\rangle \right],\quad
N_{\pm}\equiv \sqrt{4T_c^2+(\Delta \mp \varepsilon)^2}$  
$\displaystyle \varepsilon_{\pm}$ $\displaystyle =$ $\displaystyle \pm \frac{1}{2}\Delta,\quad \Delta\equiv\sqrt{\varepsilon^2+4T_c^2},$ (2.5)

corresponding to hybridized wave functions, i.e. bonding and anti-bonding superpositions of the two, originally localized states \bgroup\color{col1}$ \vert L\rangle$\egroup and \bgroup\color{col1}$ \vert R\rangle$\egroup. The corresponding eigenvalues \bgroup\color{col1}$ \varepsilon_{\pm}=\pm \frac{1}{2}\Delta$\egroup of the double well represent two energy surfaces over the \bgroup\color{col1}$ T_c$\egroup- \bgroup\color{col1}$ \varepsilon$\egroup plane, with an avoided level crossing of splitting \bgroup\color{col1}$ \Delta$\egroup. For \bgroup\color{col1}$ \varepsilon=0$\egroup, one has \bgroup\color{col1}$ \vert\pm \rangle=(1/\sqrt{2})(\pm {\rm sign}(T_c)\vert L\rangle + \vert R\rangle )$\egroup such that for the choice \bgroup\color{col1}$ T_c<0$\egroup the ground state \bgroup\color{col1}$ \vert-\rangle = (1/\sqrt{2}) (\vert L\rangle + \vert R\rangle )$\egroup with energy \bgroup\color{col1}$ \varepsilon_-=-\frac{1}{2}\Delta$\egroup is the symmetric superposition of \bgroup\color{col1}$ \vert L\rangle$\egroup and \bgroup\color{col1}$ \vert R\rangle$\egroup.

Figure: New hybridized basis states of the double well potential.
\includegraphics[width=0.4\textwidth]{dwell4a} \includegraphics[width=0.4\textwidth]{dwell4b}

Exercise: Check these results by doing the diagonalisation! Hint: this leads to a quadratic equation.


next up previous contents index
Next: Second Order Perturbation Theory Up: Example: Two-Level System Previous: Example: Two-Level System   Contents   Index
Tobias Brandes 2005-04-26