next up previous contents index
Next: Adiabaticity and Geometric Phases Up: The Born-Oppenheimer Approximation Previous: More Successful Attempt   Contents   Index

Discussion of the Born-Oppenheimer Approximation

We now have to justify the neglect of the underlined term in
$\displaystyle \mathcal{H} \psi_e \phi_n$ $\displaystyle =$ $\displaystyle {\mathcal E} \psi_e\phi_n
+ \underline{\left[ \mathcal{H}_{\rm n}\psi_e \phi_n - \psi_e\mathcal{H}_{\rm n} \phi_n\right]}.$ (2.8)

Up to here, everything was still fairly general. Now we make out choice for \bgroup\color{col1}$ \mathcal{H}_{\rm n}$\egroup as just the kinetic energy of the nuclei,
$\displaystyle \mathcal{H}_{\rm n}=\sum_{i=1}^{N} \frac{P_i^2}{2M_i}.$     (2.9)

We simplify the following discussion by writing
$\displaystyle \mathcal{H}_{\rm n}=\frac{P^2}{2M}=-\frac{\hbar^2}{2M}\nabla_X^2,$     (2.10)

which refers to a) a single relative motion of two nuclei of effective mass \bgroup\color{col1}$ M$\egroup, or alternatively b) represents an `abstract notation' for \bgroup\color{col1}$ \mathcal{H}_{\rm n}=\sum_{i=1}^{N} \frac{P_i^2}{2M_i}$\egroup (to which the following transformations can easily be generalised).

We write

    $\displaystyle \mathcal{H}_{\rm n}\psi_e \phi_n - \psi_e\mathcal{H}_{\rm n} \phi...
... \left[\nabla_X^2 \psi_e(q,X) \phi_n(X) - \psi_e(q,X)\nabla_X^2\phi_n(X)\right]$  
  $\displaystyle =$ $\displaystyle -\frac{\hbar^2}{2M} \Big[ \nabla_X \left\{\phi_n \nabla_X\psi_e + \phi_e \nabla_X\psi_n \right\}
-\psi_e\nabla_X^2\phi_n\Big]$  
  $\displaystyle =$ $\displaystyle -\frac{\hbar^2}{2M} \Big[ 2 \nabla_X\phi_n \nabla_X\psi_e
+ \phi_n \nabla_X^2 \psi_e\Big].$ (2.11)

This term is therefore determined by the derivative of the electronic part with respect to the nuclear positions \bgroup\color{col1}$ X$\egroup, and it has the factor \bgroup\color{col1}$ 1/M$\egroup in front. The `handwaving' argument now is to say that the derivatives \bgroup\color{col1}$ \nabla_X\psi_e$\egroup and \bgroup\color{col1}$ \nabla_X^2\psi_e$\egroup are small.


next up previous contents index
Next: Adiabaticity and Geometric Phases Up: The Born-Oppenheimer Approximation Previous: More Successful Attempt   Contents   Index
Tobias Brandes 2005-04-26