next up previous contents index
Next: Breakdown of the Born-Oppenheimer Up: The Born-Oppenheimer Approximation Previous: Discussion of the Born-Oppenheimer   Contents   Index

Adiabaticity and Geometric Phases

The electronic part equation
$\displaystyle \left[\mathcal{H}_{\rm e}(q,p)+\mathcal{H}_{\rm en}(q,X)\right] \psi_e(q,X)$ $\displaystyle =$ $\displaystyle E(X) \psi_e(q,X)$ (2.12)

usually should give not only one but a whole set of eigenstates,
$\displaystyle \left[\mathcal{H}_{\rm e}+\mathcal{H}_{\rm en}\right] \vert\alpha(X)\rangle$ $\displaystyle =$ $\displaystyle E_\alpha(X)\vert\alpha(X)\rangle.$ (2.13)

Assume that for a fixed \bgroup\color{col1}$ X$\egroup we have orthogonal basis of the electronic Hilbert space with states \bgroup\color{col1}$ \vert\alpha(X)\rangle$\egroup, no degeneracies and a discrete spectrum \bgroup\color{col1}$ E_\alpha(X)$\egroup,
$\displaystyle \langle \alpha(X)\vert \beta(X)\rangle = \delta_{\alpha\beta}.$     (2.14)

Adiabaticity means that when \bgroup\color{col1}$ X$\egroup is changed slowly from \bgroup\color{col1}$ X\to X'$\egroup, the corresponding state slowly changes from \bgroup\color{col1}$ \vert\alpha(X)\rangle\to\vert\alpha(X')\rangle$\egroup and does not jump to another \bgroup\color{col1}$ \alpha'\ne \alpha$\egroup like \bgroup\color{col1}$ \vert\alpha(X)\rangle\to\vert\alpha'(X')\rangle$\egroup. In that case, we can use the \bgroup\color{col1}$ \vert\alpha(X)\rangle$\egroup as a basis for all \bgroup\color{col1}$ X$\egroup and write
$\displaystyle \Psi(q,X)=\sum_\alpha \phi_\alpha (X) \psi_\alpha(q,X).$     (2.15)

Now
$\displaystyle \mathcal{H}\sum_\alpha \vert\phi_\alpha\rangle_n \otimes \vert\psi_\alpha\rangle_e$ $\displaystyle =$ $\displaystyle \sum_\alpha \left[ \mathcal{H}_{\rm n} + E_\alpha(X)\right] \vert\phi_\alpha\rangle_n \otimes \vert\psi_\alpha\rangle_e,$ (2.16)

and taking the scalar product with a \bgroup\color{col1}$ \langle \psi_\alpha\vert$\egroup of the Schrödinger equation \bgroup\color{col1}$ \mathcal{H} \Psi=\mathcal{E} \Psi$\egroup therefore gives
$\displaystyle \left[\langle \psi_\alpha\vert \mathcal{H}_{\rm n}\vert\psi_\alph...
...pha(X)\right] \vert\phi_\alpha\rangle_n
= \mathcal{E} \vert\phi_\alpha\rangle_n$     (2.17)

This is the Schrödinger equation for the nuclei within the adiabatic approximation. Now using again
$\displaystyle \mathcal{H}_{\rm n}$ $\displaystyle =$ $\displaystyle -\frac{\hbar^2}{2M}\nabla_X^2
\leadsto \mathcal{H}_{\rm n} \psi_\alpha(q,X) \phi_\alpha(X)$  
  $\displaystyle =$ $\displaystyle -\frac{\hbar^2}{2M}\Big[\psi_\alpha(q,X) \nabla^2_X \phi_\alpha(X)
+ \phi_\alpha(X) \nabla^2_X \psi_\alpha(q,X)$  
  $\displaystyle +$ $\displaystyle 2 \nabla_X \phi_\alpha(X) \nabla_X \psi_\alpha(q,X)\Big]$ (2.18)

and therefore the nuclear Schrödinger equation becomes
    $\displaystyle \left[\langle \psi_\alpha\vert \mathcal{H}_{\rm n}\vert\psi_\alph...
...ght] \vert\phi_\alpha\rangle_n
= \mathcal{E} \vert\phi_\alpha\rangle_n \leadsto$  
    $\displaystyle \left[-\frac{\hbar^2}{2M}\nabla_X^2 +E_\alpha(X) - \langle \psi_\...
...\nabla_X}{M}\vert \psi_\alpha\rangle \nabla_X \right]
\vert\phi_\alpha\rangle_n$  
  $\displaystyle =$ $\displaystyle \mathcal{E} \vert\phi_\alpha\rangle_n$ (2.19)

which can be re-written as
$\displaystyle \left[-\frac{\hbar^2}{2M}\nabla_X^2 +E_\alpha(X) -\frac{\hbar^2}{2M}G(X) -\frac{\hbar^2}{M}F(X)\nabla_X
\right]
\vert\phi_\alpha\rangle_n$ $\displaystyle =$ $\displaystyle \mathcal{E} \vert\phi_\alpha\rangle_n$  
$\displaystyle G(X)\equiv \langle \psi_\alpha\vert\nabla^2_X\psi_\alpha\rangle,\quad
F(X)\equiv \langle \psi_\alpha\vert\nabla_X\psi_\alpha\rangle$   $\displaystyle ,$ (2.20)

where we followed the notation by Mead and Truhlar in their paper J. Chem. Phys. 70, 2284 (1979). Eq. (E.5.2) is an important result as it shows that the adiabatic assumption leads to extra terms \bgroup\color{col1}$ F(X)$\egroup and \bgroup\color{col1}$ G(X)$\egroup in the nuclear Schrödinger equation in BO approximation on top of just the potential created by the electrons. In particular, the term \bgroup\color{col1}$ F(X)$\egroup is important as it leads to a non-trivial geometrical phase in cases where the curl of \bgroup\color{col1}$ F(X)$\egroup is non-zero. This has consequences for molecular spectra, too. geometric phases such as the abelian Berry phase and the non-abelian Wilczek-Zee holonomies play an important role in other areas of modern physics, too, one example being `geometrical quantum computing'. For more info on the geometric phase in molecular systems, cf. the Review by C. A. Mead, Prev. Mod. Phys. 64, 51 (1992).


next up previous contents index
Next: Breakdown of the Born-Oppenheimer Up: The Born-Oppenheimer Approximation Previous: Discussion of the Born-Oppenheimer   Contents   Index
Tobias Brandes 2005-04-26