next up previous contents
Next: Axioms of Quantum Mechanics Previous: ** Determinant of (10   Contents

** A more general definition of the transfer matrix $ M$ ($ >30$ min)

We consider a one-dimensional potential of the form

$\displaystyle V(x)=\left\{ \begin{array}{cc} 0, & \\ v(x), & \\ 0 & \end{array}...
...(x), & x_1<x\le x_2 \\ c e^{ikx}+de^{-ikx}, & x_2<x< \infty \end{array} \right.$ (21)

Here, $ v(x)$ is an arbitrary real potential. The central part $ \phi(x)$ of the wave function $ \psi(x)$ therefore in general is very difficult to calculate. We can, however, relate the coefficients $ a$, $ b$ (left side) with the coefficients $ c$, $ d$ (right side): if some fixed values for $ c$ and $ d$ are chosen, this determines the solution $ \psi(x)$ everywhere on the $ x$-axis and therefore in particular $ a$ and $ b$. We write this relation as
\begin{displaymath}\left(
\begin{array}{c}
a \\
b
\end{array}\right)=
\left(
\b...
...ray}\right)
\left(
\begin{array}{c}
c \\
d
\end{array}\right).\end{displaymath}     (22)

a) With $ \psi(x)$ also the conjugate complex $ \psi^*(x)$ must be a solution of the stationary Schrödinger equation $ \hat{H}\psi(x)=E\psi(x)$. Why ?

b) Take the conjugate complex $ \psi^*(x)$ in (2.21) and show that this leads to the exchange $ a \leftrightarrow b^*$ and $ c \leftrightarrow d^*$ in (2.22).

c) Take the conjugate complex of the whole equation (2.22) and compare with the equation you obtain from part b). Show that

$\displaystyle M_{11}^*=M_{22},\quad M_{12}^*=M_{21}.$     (23)

d) Consider the current density and show that

$\displaystyle \vert a\vert^2 - \vert b\vert^2 = \vert c\vert^2 - \vert d\vert^2.$     (24)

Write this equation as a scalar product of vectors in the form
\begin{displaymath}(a^* b^*)
\left(
\begin{array}{cc}
1 & 0 \\
0 & -1
\end{arra...
...ray}\right)
\left(
\begin{array}{c}
c \\
d
\end{array}\right).\end{displaymath}     (25)

Use the matrix $ M$ to derive from this
$\displaystyle \det(M)=1.$     (26)


next up previous contents
Next: Axioms of Quantum Mechanics Previous: ** Determinant of (10   Contents
Tobias Brandes 2004-02-04