next up previous contents
Next: Scattering states in one Up: The Potential Well Previous: The parity   Contents

Even and odd solutions for the potential well

Applied to our potential well, we can classify the solutions into even and odd,

$\displaystyle \psi_e(x)=\left\{ \begin{array}{cc} a_1 e^{\kappa x}, & \\ a_2 \c...
...n({kx}) , & -a <x\le a \\ A_1 e^{-\kappa x}, & a <x< \infty \end{array} \right.$ (108)

The wave function $ \psi(x)$ and its derivative $ \psi'(x)$ have to be continuous at $ x=\pm a$. Therefore, also the logarithmic derivative
$\displaystyle \frac{\psi'(x)}{\psi(x)}=\frac{d}{dx}\log \psi(x)$     (109)

has to be continuous. This is a convenient way to obtain an equation that relates $ k$ and $ \kappa$ and determines the possible energy values: we calculate the logarithmic derivative for $ x=a\pm \varepsilon$, $ \varepsilon \to 0$ which yields
$\displaystyle -\kappa$ $\displaystyle =$ $\displaystyle -k \tan (ka),$   even solution  
$\displaystyle -\kappa$ $\displaystyle =$ $\displaystyle k \cot (ka),$   odd solution  
$\displaystyle k$ $\displaystyle =$ $\displaystyle \sqrt{({2m}/{\hbar^2})\left(-\vert E\vert+V\right)},\quad \kappa = \sqrt{({2m}/{\hbar^2}) \vert E\vert}.$ (110)

These are transcendent equations for the energy $ E$: we introduce auxiliary dimensionless variables
$\displaystyle x\equiv ka,\quad y = \kappa a \leadsto x^2+y^2 = r^2\equiv \frac{2ma^2V}{\hbar^2},\quad V>0.$     (111)

The equations
$\displaystyle y$ $\displaystyle =$ $\displaystyle x\tan x,\quad x^2+y^2 = r^2$   even solution  
$\displaystyle y$ $\displaystyle =$ $\displaystyle -x\cot x,\quad x^2+y^2 = r^2$   odd solution (112)

describe two curves in the $ x$-$ y$-plane, i.e. the circle $ x^2+y^2=r^2$, with
$\displaystyle r\equiv \sqrt{\frac{2m}{\hbar^2}a^2 V},$     (113)

and the curve $ y=x\tan(x)$ ( $ y=-x\cot(x)$ for the odd solution), whose intersections determine a fixed number of points $ (x_n,y_n)$ in the quadrant of positive $ x$ and $ y$. These determine the energy eigenvalues $ E_n$ via the definition of $ k$ and $ \kappa$. Of course, the $ E_n$ depend on the value of the parameter $ r$ which in turn is determined by the depth of the potential well $ V$, its width $ a$ and the particle mass $ m$.

Figure: Graphical solution of (2.35) for $ r= 10$ (left) and $ r=2$ (right).
\includegraphics[width=0.45\textwidth]{finitewell1.eps} \includegraphics[width=0.45\textwidth]{finitewell2.eps}

To obtain precise values for the possible energy eigenvalue $ E_n$, one has to numerically solve (2.35). A convenient method to obtain a qualitative picture, however, is the graphical solution of the transcendent equations as shown in Fig. (2.1). The intersections $ y_n$, $ n=1,2,...$ of the $ x \tan(x)$- or $ -x \cot(x)$-curves with the circle of radius $ r$ determine $ E_n$ via $ E_n= - (\hbar^2/2ma^2)y_n^2$ (remember that we have required $ E_n<0$)

1. There are only a finite number $ N$ of solutions for the energies $ E_1<E_2<...<E_N$ depending on the value of the parameter $ r$.

2. The wave function corresponding to the lowest eigenvalue $ E_1$ is even. Even and odd solutions alternate when `climbing up' the ladder of possible eigenvalues $ E_n$.


next up previous contents
Next: Scattering states in one Up: The Potential Well Previous: The parity   Contents
Tobias Brandes 2004-02-04