next up previous contents
Next: The Tunnel Effect and Up: Scattering states in one Previous: Plane waves   Contents

Potential scattering

We now consider a piecewise constant potential $ V(x)$ with the corresponding wave function given by

$\displaystyle V(x)=\left\{ \begin{array}{cc} V_1, & \\ V_2, & \\ V_3, & \\ ... ...
...a_{N+1}e^{ik_{N+1}x}+b_{N+1}e^{-ik_{N+1}x}, & x_N<x< \infty \end{array} \right.$ (119)

$ k_j=\sqrt{({2m}/{\hbar^2})\left(E-V_j\right)}$.

We first consider the case $ E>V_1,V_{N+1}$ such that $ k_1$ and $ k_{N+1}$ are real wave vectors and $ \psi(x)$ describes running waves outside the `scattering region' $ [x_1,x_N]$. Our aim now is the following: we would like to determine solutions of the Schrödinger equation, i.e. wave functions $ \psi(x)$, under the scattering condition $ b_{N+1}=0$, i.e. we seek solutions that have only waves $ a_{N+1}e^{ik_{N+1}x}$ traveling to the right (away from the scattering zone) on the right side of the potential. On the left side, we have the wave $ a_1e^{ik_1x}+b_1e^{-ik_1x}$, i.e. a superposition of a right-going (incoming) and a left-going (outgoing) wave. We would like to know how much of an incoming wave gets reflected on the left side (coefficient $ b_1$) and how much gets transmitted on the right side ($ a_{N+1}$).

Step 1: we demand that $ \psi(x)$ and its derivative $ \psi'(x)$ are continuous at $ x=x_1$. This gives two equations

$\displaystyle a_1e^{ik_1x_1}+b_1e^{-ik_1x_1}$ $\displaystyle =$ $\displaystyle a_2e^{ik_2x_1}+b_2e^{-ik_2x_1}$  
$\displaystyle a_1e^{ik_1x_1}-b_1e^{-ik_1x_1}$ $\displaystyle =$ $\displaystyle (k_2/k_1)(a_2e^{ik_2x_1}-b_2e^{-ik_2x_1})$ (120)

or
$\displaystyle a_1$ $\displaystyle =$ $\displaystyle \frac{1}{2}\left(\frac{k_2}{k_1}+1\right)e^{i(k_2-k_1)x_1}a_2
+ \frac{1}{2}\left(1-\frac{k_2}{k_1}\right)e^{-i(k_2+k_1)x_1}b_2$  
$\displaystyle b_1$ $\displaystyle =$ $\displaystyle \frac{1}{2}\left(1-\frac{k_2}{k_1}\right)e^{i(k_2+k_1)x_1}a_2
+ \frac{1}{2}\left(1+\frac{k_2}{k_1}\right)e^{-i(k_2-k_1)x_1}b_2$ (121)

which can be written in a matrix form

$\displaystyle {\bf u}_1=T^1{\bf u}_2,\quad {\bf u}_i= \left( \begin{array}{c} a_i \\ b_i \end{array} \right),\quad i=1,2,$ (122)

with

$\displaystyle T^1=\frac{1}{2k_1}\left( \begin{array}{cc} (k_1+k_2)e^{i(k_2-k_1)...
...\ (k_1-k_2)e^{i(k_2+k_1)x_1} & (k_1+k_2)e^{-i(k_2-k_1)x_1} \end{array} \right).$ (123)

Step 2: In completely the same manner, we obtain the transfer matrix $ T^2$ at the `slice' $ x=x_2$ and

$\displaystyle {\bf u}_2=T^2{\bf u}_3 \leadsto {\bf u}_1=T^1{\bf u}_2 = T^1 T^2{\bf u}_3.$ (124)

Doing this for all the slices $ x_1,...,x_N$, we obtain the complete transfer matrix $ M$ that connects the wave function on the left side of the potential with the one on the right side,

$\displaystyle {\bf u}_1=M{\bf u}_{N+1},\quad M=T^1T^2...T^N.$ (125)

Step 3: We use the continuity equation

$\displaystyle \partial_t\rho(x,t)+\partial_x j(x,t)$ $\displaystyle =$ 0 (126)
$\displaystyle \rho(x,t)$ $\displaystyle :=$ $\displaystyle \psi(x,t)\psi^*(x,t)$  
$\displaystyle j(x,t)$ $\displaystyle :=$ $\displaystyle -\frac{i\hbar}{2m} \left[ \psi(x,t)^*\partial_x\psi(x,t)-
\psi(x,t)\partial_x\psi^*(x,t)\right]$  
$\displaystyle \psi(x,t)$ $\displaystyle =$ $\displaystyle \psi(x)e^{-iEt/\hbar}.$ (127)

The current density is time-independent and can be written as
$\displaystyle j(x)$ $\displaystyle :=$ $\displaystyle -\frac{i\hbar}{2m} \left[ \psi(x)^*\partial_x\psi(x)-
\psi(x)\partial_x\psi^*(x)\right]= \frac{\hbar}{m}{\rm Im} \left[ \psi^*(x)\psi'(x)\right].$ (128)

The current density on the right and left side of the potential is
$\displaystyle j(x>x_N)$ $\displaystyle =$ $\displaystyle \frac{\hbar}{m}{\rm Im} (ik_{N+1} \vert a_{N+1}\vert^2) =\vert a_{N+1}\vert^2 \frac{\hbar k_{N+1}}{m}$  
$\displaystyle j(x<x_1)$ $\displaystyle =$ $\displaystyle \frac{\hbar}{m}{\rm Im} \left[(a_1^*e^{-ik_1x}+b_1^*e^{ik_1x})ik_1
(a_1e^{ik_1x}-b_1e^{-ik_1x})\right]$  
  $\displaystyle =$ $\displaystyle \frac{\hbar k_1}{m}[\vert a_1\vert^2 - \vert b_1\vert^2].$ (129)

The current density $ j(x>x_N)$ describes a particle flow to the right of the potential, `out-flowing' to $ x\to \infty$. On the other hand, the current density $ j(x<x_1)$ is the difference of an in-flowing positive current density and an out-flowing negative current density. The former describes an incoming particle, the latter a particle that is reflected back from the potential and returning back to $ x=-\infty$.

Step 4: We define the transmission coefficient $ T$ as the ratio of the right out-flowing current density to the left in-flowing current density,

$\displaystyle T:=\frac{k_{N+1}}{k_1}\left\vert\frac{a_{N+1}}{a_1}\right\vert^2.$     (130)

From
\begin{displaymath}\left(
\begin{array}{c}
a_1 \\
b_1
\end{array}\right)=
\left...
...
\left(
\begin{array}{c}
a_{N+1} \\
b_{N+1}
\end{array}\right)\end{displaymath}     (131)

and the scattering condition $ b_{N+1}=0$ it follows
$\displaystyle T=\frac{k_{N+1}}{k_1}\frac{1}{\vert M_{11}\vert^2}.$     (132)

To calculate the transmission coefficient through a piecewise constant one-dimensional potential, it is therefore sufficient to know the total transfer matrix $ M$. The fact that $ M=T^1T^2...T^N$ is just the product of the individual two-by two transfer matrices makes it a very convenient tool for computations.

Figure: Reflection and Transmission
\includegraphics[width=0.5\textwidth]{qm2_4_1.eps}

Step 5: In completely the same manner, we define the reflection coefficient $ R$ as the ratio of the out-flowing current density on the left and the in-flowing (reflected) current density on the left, i.e.

$\displaystyle R:=\left\vert\frac{b_1}{a_1}\right\vert^2=\left\vert\frac{M_{21}}{M_{11}}\right\vert^2.$     (133)

The last equality is left as an exercise.

For eigenstates of energy $ E$ we have from the continuity equation

$\displaystyle \partial_t\rho(x,t)\equiv\partial_t\rho(x)=0\leadsto \partial_x j(x)=0\leadsto j(x)= const.$     (134)

Using Eq. (2.52) and the definition of $ T$ and $ R$, this leads to
$\displaystyle T+R=1.$     (135)


next up previous contents
Next: The Tunnel Effect and Up: Scattering states in one Previous: Plane waves   Contents
Tobias Brandes 2004-02-04