next up previous contents
Next: Phonons and Photons Up: Ladder Operators, Phonons and Previous: The Ladder Operators and   Contents

The Harmonic Oscillator

The connection of the above algebraic tour de force with the harmonic oscillator is very simple: The Hamiltonian (4.38) can be written as
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
\hat{H}=\frac{\hat{p}^2}...
...{2} \right)
= \hbar \omega \left( \hat{N} + \frac{1}{2} \right)
\end{array}$\ }$     (272)

which you can check by inserting the definitions of $ a$ and $ a^{\dagger }$. The eigenvectors of $ \hat{H}$ are the eigenvectors of $ \hat{N}$:
$\displaystyle \hat{H}\vert n\rangle = \hbar \omega \left( \hat{N} + \frac{1}{2}...
...t) \vert n\rangle
= \hbar \omega \left( n + \frac{1}{2} \right) \vert n\rangle,$     (273)

from which we can read off the eigenvalues of the harmonic oscillator, $ E_n=
\hbar\omega(n+1/2)$. The corresponding eigenfunctions are, of course, the eigenfunctions of the harmonic oscillator,
$\displaystyle \vert n\rangle \leftrightarrow
\psi_n(x)$ $\displaystyle =$ $\displaystyle \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}
\frac{1}{\sqrt{n! 2^n}}H_n\left(\sqrt{\frac{m\omega}{\hbar}}\right)e^{-\frac{m\omega}{2\hbar}x^2}.$ (274)

This is not so easy to see directly; it is proofed for the ground state $ \vert\rangle$ in the problems.


next up previous contents
Next: Phonons and Photons Up: Ladder Operators, Phonons and Previous: The Ladder Operators and   Contents
Tobias Brandes 2004-02-04