next up previous contents index
Next: Solution of the PDE Up: -representation Previous: Derivation of the PDE   Contents   Index

Solution of the PDE I: zero temperature $ T=0\leadsto n_B=0$

In this case, we only have first order derivatives. There is a (more or less) complete theory of first order PDEs: they are solved by the method of characteristics (cf. Courant/Hilbert).

We write the PDE as

$\displaystyle \left\{ \frac{\partial}{\partial t}
- i\left[ \bar{\Omega} - i\ka...
...a\right]z^*\frac{\partial}{\partial z^*}
\right\} P(z,z^*t) = 2\kappa P(z,z^*t)$     (80)

and consider the function $ P(z,z^*,t)$ on trajectories $ z=z(t)$ and $ z^*=z^*(t)$ where $ P(z,z^*,t)=P(z(t),z^*(t),t)$. We regard the l.h.s. of Eq.(7.81) as a total differential. Along the trajectories, the temporal change of $ P$ is
$\displaystyle \frac{d}{dt} P(z(t),z^*(t),t)$ $\displaystyle =$ $\displaystyle \left\{ \dot{z}(t) \partial_z +\dot{z}^*(t) \partial_{z^*}
+\partial_t \right\} P(z(t),z^*(t),t)$  
  $\displaystyle =$ $\displaystyle 2\kappa P(z(t),z^*(t),t)$ (81)

Comparison yields
$\displaystyle \dot{z}(t)$ $\displaystyle =$ $\displaystyle - i\left[ \bar{\Omega} - i\kappa\right]z(t)\leadsto
z(t)=z_0e^{- i\left[ \bar{\Omega} - i\kappa\right]t}$  
$\displaystyle \dot{z}^*(t)$ $\displaystyle =$ $\displaystyle i\left[ \bar{\Omega} + i\kappa\right]z^*(t)\leadsto
z^*(t)=z_0^*e^{ i\left[ \bar{\Omega} + i\kappa\right]t}.$ (82)

On the other hand, $ \frac{d}{dt} P = 2\kappa P$ yields
$\displaystyle P(z(t),z^*(t),t)$ $\displaystyle =$ $\displaystyle e^{2\kappa t}P_0(z_0,z_0^*).$ (83)

Here, $ P_0$ is the initial condition for $ P$, with $ z_0=z(t=0)$ and $ z_0^*=z^*(t=0)$. This looks very innocent but has a deep physical (and geometrical) meaning: we can trace back our trajectories $ z(t)$,$ z^*(t)$ to their origin $ z_0$, $ z_0^*$, writing
$\displaystyle z_0$ $\displaystyle =$ $\displaystyle z(t)e^{+i\left[ \bar{\Omega} - i\kappa\right]t},\quad
z_0^*= z^*(t)e^{-i\left[ \bar{\Omega} + i\kappa\right]t}.$ (84)

We thus have expressed the inital values $ z_0$, $ z_0^*$ in terms of the `final' values $ z(t)$,$ z^*(t)$. Insertion into Eq.(7.84) yields
$\displaystyle P(z(t),z^*(t),t)$ $\displaystyle =$ $\displaystyle e^{2\kappa t}P_0\left(
z(t)e^{+i\left[ \bar{\Omega} - i\kappa\right]t},
z^*(t)e^{-i\left[ \bar{\Omega} + i\kappa\right]t}\right).$ (85)

We now write again $ z$ and $ z^*$ instead of $ z(t)$, $ z^*(t)$, and therefore have
$\displaystyle P(z,z^*,t)$ $\displaystyle =$ $\displaystyle e^{2\kappa t}P_0\left(
ze^{+i\left[ \bar{\Omega} - i\kappa\right]t},
z^*e^{-i\left[ \bar{\Omega} + i\kappa\right]t}\right).$ (86)


next up previous contents index
Next: Solution of the PDE Up: -representation Previous: Derivation of the PDE   Contents   Index
Tobias Brandes 2004-02-18