next up previous contents index
Next: -representation Up: -representation Previous: Solution of the PDE   Contents   Index

Solution of the PDE II: finite temperature $ T\ge 0\leadsto n_B\ge 0$

Since we know the solution for $ n_B=0$, we perform a transformation of variables and seek the solution for $ n_B>0$ in the form
$\displaystyle P(z,z^*t)=F(u,u^*,s),\quad{u=ze^{+i\left[ \bar{\Omega} - i\kappa\right]t},
u^*=z^*e^{-i\left[ \bar{\Omega} + i\kappa\right]t},s=t},$     (87)

which leads to
$\displaystyle \partial_t P$ $\displaystyle =$ $\displaystyle \left(i \left[ \bar{\Omega} - i\kappa\right]ze^{+i\left[ \bar{\Om...
...ft[ \bar{\Omega} + i\kappa\right]t}
\partial_{u^*} +\partial_s\right)F(u,u^*,s)$  
  $\displaystyle =$ $\displaystyle \left(i \left[ \bar{\Omega} - i\kappa\right]z\partial_z
- i \left...
...ga} + i\kappa\right]z^* \partial_{z^*}\right) P(z,z^*t)
+ \partial_s F(u,u^*,s)$  
  $\displaystyle \Check=$ $\displaystyle \left(i \left[ \bar{\Omega} - i\kappa\right]z\partial_z
- i \left...
... \partial_{z^*}
+2\kappa+2\kappa n_B\partial_z \partial_{z^*}\right) P(z,z^*t),$ (88)

where in the last line we compared with the original PDE. Therefore, one has
$\displaystyle \partial_s F(u,u^*,s )$ $\displaystyle =$ $\displaystyle 2\kappa F(u,u^*,s ) + 2\kappa n_B
\partial_z \partial_{z^*}P(z,z^*t)$  
  $\displaystyle =$ $\displaystyle 2\kappa F(u,u^*,s )+ 2\kappa n_B e^{2\kappa s}\partial_u \partial_{u^*}F(u,u^*,s ),$ (89)

where we used $ \partial_z \partial_{z^*}=e^{2\kappa s}\partial_u \partial_{u^*}$, cf. Eq.(7.88). The big advantage now is that we had got rid of the first order derivatives with the $ z$,$ z^*$-dependent coefficients. Eq.(7.90) is now a standard diffusion equation with time $ (s=t)$-dependent coefficients, which can be solved by Fourier transformation:

Reminder: Complex Fourier Transformation, cf (4.141)


Fourier Trafo $\displaystyle \tilde{f}(w)$ $\displaystyle \equiv$ $\displaystyle \int d^2z e^{i{\bf zw}} f(z),\quad
f(z) = \int \frac{d^2w}{(2\pi)^2}e^{-i{\bf zw}} \tilde{f}(w)$  
scalar product $\displaystyle {\bf zw}$ $\displaystyle \equiv$ \begin{displaymath}\frac{1}{2}\left(zw^*+z^*w\right)=(z_1,z_2)\left(
\begin{array}[h]{c}
w_1\\ w_2
\end{array}\right)\end{displaymath} (90)

Reminder: Gauß Integrals

$\displaystyle \int_{-\infty}^{\infty}dx e^{-ax^2+bx}$ $\displaystyle =$ $\displaystyle \sqrt{\frac{\pi}{a}}e^{\frac{b^2}{4a}},\quad
\Re a>0$ (91)
$\displaystyle \int \frac{d^2w}{(2\pi)^2} e^{-i{\bf zw}} e^{-\frac{a}{4}{\bf ww}}$ $\displaystyle =$ $\displaystyle \frac{1}{\pi a}e^{-\frac{\vert z\vert^2}{a}}.$ (92)

We now Fourier-transform Eq.(7.90), $ \partial_s F= (2\kappa + 2\kappa n_B
e^{2\kappa s}\partial_u \partial_{u^*})F$, to obtain

$\displaystyle \partial_s \tilde{F}(w,w^*,s)$ $\displaystyle =$ $\displaystyle \left(2\kappa + 2\kappa n_B
e^{2\kappa s}\left(-\frac{1}{4}{\bf ww}\right)\right) \tilde{F}(w,w^*,s)$ (93)
$\displaystyle \leadsto \tilde{F}(w,w^*,s)$ $\displaystyle =$ $\displaystyle \exp\left\{
2\kappa s -\frac{1}{4}n_B \left(e^{2\kappa s} -1\right) {\bf ww}\right\}
\tilde{F}(w,w^*,s=0)$  
$\displaystyle \leadsto F(u,u^*,s)$ $\displaystyle =$ $\displaystyle \int \frac{d^2 w}{(2\pi)^2} e^{-i{\bf uw}}
\exp\left\{
2\kappa s ...
...ac{1}{4}n_B \left(e^{2\kappa s} -1\right) {\bf ww}\right\}
\tilde{F}(w,w^*,s=0)$  
  $\displaystyle =$ $\displaystyle \int d^2 u' \int \frac{d^2 w}{(2\pi)^2} e^{-i{\bf (u-u')w}}
e^{\l...
... -\frac{1}{4}n_B \left(e^{2\kappa s} -1\right) {\bf ww}\right\}}
F(u',u'^*,s=0)$  
  $\displaystyle =$ $\displaystyle \frac{e^{2\kappa s}}{\pi n_B \left(e^{2\kappa s} -1\right)}
\int ...
...ac{\vert u-u'\vert^2}{n_B \left(e^{2\kappa s} -1\right)}\right\}
F(u',u'^*,s=0)$  

Now we remember $ u=ze^{+i\left[ \bar{\Omega} - i\kappa\right]t}$, $ s=t$, and write $ u'=z'$ in $ F(u',u'^*,s=0)=P(z',z'^*,t=0)$, to find
$\displaystyle P(z,z^*,t)$ $\displaystyle =$ $\displaystyle \int d^2 z'\frac{1}{\pi n_B \left(1-e^{2\kappa t}\right)}
\exp\le...
...\right]t}-z'\vert^2}
{n_B \left(e^{2\kappa t} -1\right)}\right\} P(z',z'^*,t=0)$  
  $\displaystyle =$ $\displaystyle \int d^2 z'\frac{1}{\pi n_B \left(1-e^{-2\kappa t}\right)}
\exp\l...
...pa\right]t}\vert^2}
{n_B \left(1-e^{-2\kappa t} \right)}\right\} P(z',z'^*,t=0)$  
  $\displaystyle \equiv$ $\displaystyle \int d^2 z' G(z,z';t) P(z',z'^*,t=0),$  
$\displaystyle G(z,z';t)$ $\displaystyle \equiv$ $\displaystyle \frac{1}{\pi n_B \left(1-e^{-2\kappa t}\right)}
\exp\left\{-\frac...
...Omega} - i\kappa\right]t}\vert^2}
{n_B \left(1-e^{-2\kappa t} \right)}\right\}.$ (94)

This is the solution of the initial value problem of the PDE: we have explicitely constructed the propagator $ G(z,z';t)$ and expressed the solution of the PDE at times $ t>0$ in terms of the initial $ P$-distribution $ P(z',z'^*,t=0)$.


next up previous contents index
Next: -representation Up: -representation Previous: Solution of the PDE   Contents   Index
Tobias Brandes 2004-02-18