next up previous contents index
Next: Applications: Linear Coupling, Damped Up: Influence Functional for Coupling Previous: Influence Phase   Contents   Index


Linear Response, Fluctuation-Dissipation Theorem for $ L(t)$

We first check that
$\displaystyle L(t) = \langle x(t) x \rangle_0,$     (186)

the (van-Hove) position correlation function of the harmonic oscillator with co-ordinate $ x$ in thermal equilibrium: write
$\displaystyle x$ $\displaystyle =$ $\displaystyle \sqrt{\frac{1}{2M\Omega}} \left( a+a^{\dagger}\right),\quad
x(t) = \sqrt{\frac{1}{2M\Omega}} \left( ae^{-i\Omega t}+a^{\dagger}e^{i\Omega t}\right)$  
$\displaystyle L(t)$ $\displaystyle =$ $\displaystyle \langle x(t) x \rangle_0= \frac{1}{2M\Omega}
\langle a a^{\dagger...
...= \frac{1}{2M\Omega} \left\{ (1+n_B) e^{-i\Omega t} + n_B e^{i\Omega t}\right\}$  
  $\displaystyle =$ $\displaystyle \frac{1}{2M\Omega} \left\{ (1+2 n_B) \cos \Omega t -i \sin \Omega...
...} \left\{ \coth \frac{\beta \Omega}{2} \cos \Omega t -i \sin \Omega t \right\},$ (187)

where we again have used the relation
$\displaystyle 1+2n_B = 1+\frac{2}{e^{\beta\Omega}-1} = \frac{e^{\beta\Omega}+1 }{e^{\beta\Omega}-1}
= \coth \frac{\beta \Omega}{2}.$     (188)

Now let us have another look at this function. Consider the Hamiltonian
$\displaystyle H_B[x] + H_{SB}[xq]\equiv H(t) = \frac{p^2}{2M}+ \frac{1}{2}M\Omega^2 x^2 + f(t) x,$     (189)

where we consider the function $ f[q_t]=f(t)$ for a fixed path $ q_t$ as an external classical force acting on the oscillator. The density matrix $ \rho_B(t)$ of the oscillator in the interaction picture fulfills, cf Eq.(7.9),
$\displaystyle \tilde{\rho}_B(t)$ $\displaystyle =$ $\displaystyle {\rho}_0 -i \int_0^t dt'f(t')[\tilde{x}(t'),\tilde{\rho}_B(t')]$ (190)
  $\displaystyle \approx$ $\displaystyle {\rho}_0 -i \int_0^t dt'f(t')[\tilde{x}(t'),{\rho}_0]$   1st order$\displaystyle ,$  

where $ \rho_0={\rho}_B(t=0)$ is assumed to be the thermal equilibrium density matrix. The expectation value of the position is then
$\displaystyle \langle x \rangle_t$ $\displaystyle \equiv$ $\displaystyle {\rm Tr} {\rho}_B(t) x = {\rm Tr} \tilde{\rho}_B(t) \tilde{x}(t)$  
  $\displaystyle =$ $\displaystyle \langle x\rangle_0 - i \int_0^t dt' f(t') {\rm Tr} [\tilde{x}(t')...
...\rangle_0 - i \int_0^t dt' f(t') {\rm Tr} {\rho}_0 [\tilde{x}(t),\tilde{x}(t')]$  
  $\displaystyle =$ $\displaystyle \langle x\rangle_0 - i \int_0^t dt' f(t') \langle [\tilde{x}(t),\tilde{x}(t')] \rangle_0,$   1st order$\displaystyle .$  

We check that
$\displaystyle \langle [\tilde{x}(t),\tilde{x}(t')] \rangle_0 = \langle [\tilde{x}(t-t'),\tilde{x}(0)] \rangle_0$     (191)

(definition of $ \rho_0$ !) and define the linear susceptibility
$\displaystyle \chi_{xx}(t-t') \equiv i \theta(t-t') \langle [\tilde{x}(t-t'),\tilde{x}(0)] \rangle_0 ,$     (192)

so that we can write
$\displaystyle \langle x \rangle_t= \langle x\rangle_0 - i \int_0^t dt' \chi_{xx}(t-t') f(t').$     (193)

The theta function in $ \chi_{xx}(t-t')$ guarantees causality: the response of $ x$ at time $ t$ is determined by the system at earlier times $ t'\le t$ only.

Define additional functions and their symmetric and antisymmetric (in time) linear combinations,

$\displaystyle C^+(t)$ $\displaystyle \equiv$ $\displaystyle \langle \tilde{x}(t) x \rangle_0,\quad C^-(t) \equiv \langle \tilde{x}(-t) x \rangle_0
= \langle {x} \tilde{x}(t) \rangle_0$  
$\displaystyle C^{\pm}(t)$ $\displaystyle \equiv$ $\displaystyle S(t) \pm i A(t)$ (194)
$\displaystyle S(t)$ $\displaystyle =$ $\displaystyle S(-t) = \frac{1}{2}\langle \tilde{x}(t) x + x \tilde{x}(t) \rangl...
...A(t) = -A(-t) = \frac{1}{2i} \langle \tilde{x}(t) x - x \tilde{x}(t) \rangle_0.$  

We thus have
$\displaystyle \chi_{xx}(t)= -2 \theta(t) A(t)$     (195)

We define the Fourier transforms,
$\displaystyle \hat{C}^{\pm}(\omega) \equiv \int_{-\infty}^{\infty} dt C^{\pm}(t...
...a t},\quad
\hat{A}(\omega) \equiv \int_{-\infty}^{\infty} dt A(t) e^{i\omega t}$      
$\displaystyle \hat{\chi}(\omega) \equiv \int_{0}^{\infty} dt \chi(t) e^{i\omega t}$     (196)

and use
$\displaystyle {\rm Tr} (e^{-\beta H_B} x \tilde{x}(t) )$ $\displaystyle =$ $\displaystyle {\rm Tr} (e^{-\beta H_B} x e^{\beta H_B} e^{-\beta H_B} \tilde{x}(t) ) =
{\rm Tr} (\tilde{x}(i\beta) e^{-\beta H_B} \tilde{x}(t) )$  
  $\displaystyle =$ $\displaystyle {\rm Tr} ( e^{-\beta H_B} \tilde{x}(t)\tilde{x}(i\beta) ) =
{\rm Tr} ( e^{-\beta H_B} \tilde{x}(t-i\beta) x )$  
  $\displaystyle \leadsto$ $\displaystyle C^-(t) = C^+(t-i\beta),$ (197)

and therefore in the Fourier transform
$\displaystyle C^-(\omega) = C^+(\omega) e^{-\beta\omega}$   (detailed balance relation)$\displaystyle .$     (198)

We now define real and imaginary part of the Fourier transform of the susceptibility,
$\displaystyle \hat{\chi}_{xx}(\omega) \equiv \hat{\chi}_{xx}'(\omega)+i \hat{\chi}_{xx}''(\omega).$     (199)

Then,
$\displaystyle \hat{\chi}''(\omega)$ $\displaystyle =$ $\displaystyle {\rm Im} \int_{0}^{\infty} dt \chi(t) e^{i\omega t}
= -2 {\rm Im}...
...} \int_{0}^{\infty} dt \left ( A(t) e^{i\omega t} - A(t) e^{-i\omega t} \right)$  
  $\displaystyle =$ $\displaystyle i \int_{0}^{\infty} dt \left ( A(t) e^{i\omega t} - \int_{-\infty...
...ga t} \right)
= [A(t)=-A(-t)] = i \int_{-\infty}^{\infty} dt A(t) e^{i\omega t}$  
  $\displaystyle =$ $\displaystyle i \hat{A}(\omega) = i\frac{1}{2i}\left( \hat{C}^+(\omega) - \hat{...
...\omega)\right)
= \frac{1}{2}\left(1 - e^{-\beta\omega}\right) \hat{C}^+(\omega)$ (200)

The relation
$\displaystyle \hat{\chi}''(\omega)= \frac{1}{2}\left(1 - e^{-\beta\omega}\right) \hat{C}^+(\omega)$     (201)

is called Fluctuation-Dissipation Theorem (FDT) (Callen, Welton 1951) and can be re-written, using
$\displaystyle \hat{S}(\omega) = \frac{1}{2}(\hat{C}^+(\omega) + \hat{C}^-(\omega))
=\frac{1}{2}\left( 1+ e^{-\beta \omega} \right) \hat{C}^+(\omega),$     (202)

leading to
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
\hat{S}(\omega) = \hat{\chi}''(\omega)\coth \frac{\beta\omega}{2}.
\end{array}$\ }$     (203)

Example- harmonic oscillator: we have

$\displaystyle \chi(t)$ $\displaystyle =$ $\displaystyle i \theta(t) \langle [x(t),x]\rangle_0 = \frac {i \theta(t)}{2M\Omega}
\left(e^{-i\Omega t} - e^{i\Omega t} \right)$  
$\displaystyle \leadsto { \hat{\chi}_{xx}(\omega)}$ $\displaystyle =$ $\displaystyle {\rm Im} \frac {i }{2M\Omega}\int_{0}^{\infty} dt
\left(e^{-i\Omega t} - e^{i\Omega t} \right) e^{i\omega t}$  
  $\displaystyle =$ $\displaystyle \frac {1 }{2M\Omega}\int_{0}^{\infty} dt
\left \{ \cos (\omega-\Omega) t - \cos (\omega+\Omega) t \right\}$  
  $\displaystyle =$ $\displaystyle \frac {1 }{2M\Omega} \frac{1}{2} \int_{-\infty}^{\infty} dt
\left \{ \cos (\omega-\Omega) t - \cos (\omega+\Omega) t \right\},$ (204)

therefore
$\displaystyle \hat{\chi}_{xx}(\omega) =
{
\frac {1 }{2M\Omega} \frac{2\pi }{2} \left \{ \delta(\omega-\Omega)-\delta(\omega+\Omega) \right\}}.$     (205)

On the other hand,
$\displaystyle C(t)$ $\displaystyle \equiv$ $\displaystyle L(t) = \langle \tilde{x}(t) x\rangle_0 =
\frac{1}{2M\Omega} \left\{ \coth \frac{\beta \Omega}{2} \cos \Omega t -i \sin \Omega t \right\}$  
$\displaystyle \leadsto S(t)$ $\displaystyle =$ $\displaystyle \frac{1}{2M\Omega}\coth \frac{\beta \Omega}{2} \cos \Omega t$  
$\displaystyle \leadsto S(\omega)$ $\displaystyle =$ $\displaystyle \frac{1}{2M\Omega} \pi
\left\{ \delta(\omega+\Omega)+\delta(\omega-\Omega) \right\}\coth \frac{\beta \Omega}{2}$  
  $\displaystyle =$ $\displaystyle \frac{1}{2M\Omega} \pi
\left\{ -\delta(\omega+\Omega)+\delta(\ome...
... \frac{\beta \omega}{2}
= \hat{\chi}_{xx}(\omega) \coth \frac{\beta \omega}{2},$ (206)

which is consistent with the FDT.


next up previous contents index
Next: Applications: Linear Coupling, Damped Up: Influence Functional for Coupling Previous: Influence Phase   Contents   Index
Tobias Brandes 2004-02-18