next up previous contents index
Next: Discussion Up: `Semiclassical' Limit for Damped Previous: Completing the Square   Contents   Index

Wigner Distribution in `Semi-classical' Limit

Considering now the definition of the Wigner distribution function,
    $\displaystyle f_{\rm sc}(x,p,t) = \int_{-\infty}^{\infty}\frac{dy}{2\pi}\rho(x,...
...\frac{dy}{2\pi}e^{-ipy}
\int dx_0dy_0 \rho_0(x_0,y_0) J_{\rm sc}(x,y,t;x_0,y_0)$  
  $\displaystyle =$ $\displaystyle \int \frac{dy}{2\pi} dx_0dy_0 \rho_0(x_0,y_0) e^{-ipy}e^{iM( \dot...
... \frac{1}{2}
\int_{0}^{t}\int_{0}^{t}dt'ds \xi_{t'}\varphi_2[x_s]^{-1}\xi_{s} }$  
  $\displaystyle \times$ $\displaystyle \Delta( M\ddot{x}_{t'} + V'(x_{t'}) + F_B[x_s,t'] -\xi_{t'} )$  
  $\displaystyle =$ $\displaystyle \int dx_0 f_0(x_0,p_0=M\dot{x_0}) \delta(p-M\dot{x})
\int_{x_0}^x...
... \frac{1}{2}
\int_{0}^{t}\int_{0}^{t}dt'ds \xi_{t'}\varphi_2[x_s]^{-1}\xi_{s} }$  
  $\displaystyle \times$ $\displaystyle \Delta( M\ddot{x}_{t'} + V'(x_{t'}) + F_B[x_s,t'] -\xi_{t'} ).$ (244)

Here, the $ y$-integral generated $ \delta(p-M\dot{x})$, and the $ y_0$-integral transformed the initial condition $ \rho_0(x_0,y_0)$ into its Wigner transform $ f_0(x_0,p_0=M\dot{x_0})$. We summarise,
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
& & f_{\rm sc}(x,p,t) = ...
... \Delta( M\ddot{x}_{t'} + V'(x_{t'}) + F_B[x_s,t'] -\xi_{t'} ).
\end{array}$\ }$     (245)



Tobias Brandes 2004-02-18