next up previous contents index
Next: Rotating Field Up: Spin in Magnetic Field Previous: Spin in Magnetic Field   Contents   Index

Constant \bgroup\color{col1}$ {\bf B}$\egroup

In this case we must of course recover our usual two-level system:
$\displaystyle i \ddot{\psi}_2$ $\displaystyle =$ $\displaystyle -i[B_z^2+ \vert B_{\Vert}\vert^2] \psi_2 = -i\vert{\bf B}\vert^2 \psi_2$ (2.6)
$\displaystyle \leadsto \ddot{\psi}_2 + \vert{\bf B}\vert^2 \psi_2$ $\displaystyle =$ 0 (2.7)
$\displaystyle \leadsto \psi_2(t)$ $\displaystyle =$ $\displaystyle \psi_2(0) \cos \vert{\bf B}\vert t + \frac{\dot{\psi}_2(0)}{\vert{\bf B}\vert} \sin \vert{\bf B}\vert t$ (2.8)

For constant \bgroup\color{col1}$ {\bf B}$\egroup, the eigenvalues of the Hamiltonian
$\displaystyle {\mathcal H}$ $\displaystyle \equiv$ $\displaystyle \left( \begin{matrix}B_z & B_{\Vert}^*\\
B_{\Vert} & - B_z\end{matrix}\right)$ (2.9)

are given by \bgroup\color{col1}$ (B_z-\varepsilon) (-B_z-\varepsilon) - \vert B_{\Vert}\vert^2= 0$\egroup or \bgroup\color{col1}$ \varepsilon_{\pm} = \pm \sqrt{ B_z^2+ \vert B_{\Vert}\vert^2} = \pm \vert{\bf B}\vert$\egroup. Therefore, Eq. (VI.2.6) describes quantum mechanical oscillations with angular frequency of half the level splitting \bgroup\color{col1}$ 2\vert{\bf B}\vert$\egroup between ground and excited state, in agreement with our specific example \bgroup\color{col1}$ B_z=0, B_{\Vert}= T_c$\egroup from section VI.1.2.3.



Tobias Brandes 2005-04-26