next up previous contents index
Next: Two Electrons Up: Introduction into Many-Particle Systems Previous: -Fermion systems   Contents   Index

2-Fermion Systems

In order to get a feeling for how to work with Fermion systems, we start with the simplest case \bgroup\color{col1}$ N=2$\egroup. The basis states are the Slater determinants
$\displaystyle \langle \xi_1,\xi_2 \vert\nu_1,\nu_2\rangle_A$ $\displaystyle =$ \begin{displaymath}\frac{1}{\sqrt{2!}}
\left\vert
\begin{array}{cc}
\psi_{\nu_1}...
...nu_2}( \xi_1) & \psi_{\nu_2}( \xi_2) \\
\end{array}\right\vert\end{displaymath}  
  $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\left[ \psi_{\nu_1}( \xi_1)\psi_{\nu_2}( \xi_2) - \psi_{\nu_1}( \xi_2)\psi_{\nu_2}( \xi_1)
\right].$ (2.1)



Subsections

Tobias Brandes 2005-04-26