next up previous contents index
Next: Molecules Up: Hartree-Fock Equations Previous: Example: , `closed shell'   Contents   Index

Ground State Energy

The ground state energy in Hartree-Fock can be expressed using our equations Eq. (IV.2.9) and Eq. (IV.2.5),
$\displaystyle \langle \Psi \vert\hat{H}\vert \Psi\rangle$ $\displaystyle =$ $\displaystyle \langle \Psi \vert\hat{\mathcal H}_0\vert \Psi\rangle + \langle \Psi \vert\hat{U}\vert \Psi\rangle$ (3.35)
  $\displaystyle =$ $\displaystyle \sum_{i=1}^{N}\langle\nu_{i}\vert\hat{H}_0\vert\nu_{i}\rangle +
\...
...t\nu_{i}\nu_{j}\rangle
-\langle\nu_{i}\nu_{j}\vert U \vert\nu_{i}\nu_{j}\rangle$  
  $\displaystyle =$ $\displaystyle \sum_{i=1}^{N}\langle\nu_{i}\vert\hat{H}_0+\frac{1}{2}\left(\hat{J}-\hat{K}\right)\vert\nu_{i}\rangle,$ (3.36)

where again we used the direct and exchange operators \bgroup\color{col1}$ \hat{J}$\egroup and \bgroup\color{col1}$ \hat{K}$\egroup, Eq. (IV.3.27). Since the \bgroup\color{col1}$ \vert\nu_i\rangle$\egroup are the solutions of the HF equations Eq. (IV.3.27),
$\displaystyle \left(\hat{H_0} + \hat{J}-\hat{K}\right)\vert \nu_{j}\rangle$ $\displaystyle =$ $\displaystyle \varepsilon_j\vert \nu_{j}\rangle,$ (3.37)

we obtain
$\displaystyle E_{\Psi} \equiv \langle \Psi \vert\hat{H}\vert \Psi\rangle$ $\displaystyle =$ $\displaystyle \sum_{i=1}^{N} \left[ \varepsilon_i- \frac{1}{2}\langle\nu_{i}\vert\left(\hat{J}-\hat{K}\right)\vert\nu_{i}\rangle\right]$ (3.38)
  $\displaystyle =$ $\displaystyle \frac{1}{2}\sum_{i=1}^{N} \left[ \varepsilon_i+ \langle\nu_{i}\vert\hat{H}_0 \vert \nu_{i}\rangle\right].$ (3.39)


next up previous contents index
Next: Molecules Up: Hartree-Fock Equations Previous: Example: , `closed shell'   Contents   Index
Tobias Brandes 2005-04-26