next up previous contents
Next: Math: Gauss function Up: Fourier Transforms and the Previous: Fourier Transforms and the   Contents

Math: Fourier Integral

We define the decomposition into plane waves of a function $ f(x)$ of one variable $ x$ by its Fourier transform $ \tilde{f}(k)$,
$\displaystyle \tilde{f}(k)$ $\displaystyle :=$ $\displaystyle \int_{-\infty}^{\infty}dx {f}(x) e^{-ikx}, \quad
f(x)=\frac{1}{2\pi}\int_{-\infty}^{\infty}dk \tilde{f}(k) e^{ikx}.$ (43)

Remarks:

1. In this lecture, we define the Fourier transform with the factor $ 1/2\pi$ as in (1.43). Some people define it symmetrically, i.e. $ 1/\sqrt{2\pi}$ in front of $ f(x)$ and $ \tilde{f}(k)$.

2. Remember the Minus signs in the $ \exp$ functions.

We often use the Fourier transform $ \tilde{f}({\bf k})$ in $ d$ dimensions for a function $ f({\bf x})$, $ {\bf x}=(x_1,...,x_d)$,

$\displaystyle \tilde{f}({\bf k})$ $\displaystyle :=$ $\displaystyle \int_{-\infty}^{\infty}d{\bf x} {f}({\bf x}) e^{-i{\bf kx}},\quad...
...c{1}{(2\pi)^d}\int_{-\infty}^{\infty}d{\bf k} \tilde{f}({\bf k}) e^{i{\bf kx}}.$ (44)



Tobias Brandes 2004-02-04