next up previous contents
Next: The Delta Functional (`Delta Up: Fourier Transforms and the Previous: Math: Fourier Integral   Contents

Math: Gauss function

The Gauss function
$\displaystyle g(x):=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}$     (45)

is a convenient example to discuss properties of the Fourier transform. It can be decomposed into plane waves by
$\displaystyle \tilde{g}(k)$ $\displaystyle =$ $\displaystyle \int_{-\infty}^{\infty}dx {g}(x) e^{-ikx}=e^{-\frac{1}{2}\sigma^2k^2}$  
$\displaystyle g(x)$ $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\infty}^{\infty}dk e^{-\frac{1}{2}\sigma^2k^2} e^{ikx}$ (46)

An important integral in this context is
$\displaystyle \int_{-\infty}^{\infty} dx e^{-ax^2+bx} = \sqrt{\frac{\pi}{a}}e^{\frac{b^2}{4a}}.$     (47)

A very broad Gauss function $ g(x)$ with large $ \sigma$ is the result of a superposition of plane waves $ e^{ikx}$ in a very small range of $ k$-values around $ k=0$: if $ \sigma$ is very large, the weights $ e^{-\frac{1}{2}\sigma^2k^2}$ in the Fourier decomposition become very small for large $ \vert k\vert$. Discuss the opposite case of small $ \sigma$!


next up previous contents
Next: The Delta Functional (`Delta Up: Fourier Transforms and the Previous: Math: Fourier Integral   Contents
Tobias Brandes 2004-02-04