next up previous contents
Next: The tunnel barrier: Discussion Up: The Tunnel Effect and Previous: Potential step   Contents

The Tunnel Barrier: Transmission Coefficient

Next, we consider a potential that has the form of a rectangular barrier. In (2.42), we set $ N=2$, $ x_2=-x_1=a$, $ V_1=V_3=0$, and $ V_2=V>0$. Let us recall the matrices $ T_1$ and $ T_2$ for `step-up' and `step-down',
$\displaystyle T_1$ $\displaystyle =$ \begin{displaymath}\frac{1}{2}\left(
\begin{array}{cc}
(1+r)e^{-i\delta_-a} & (1...
...
(1-r)e^{-i\delta_+a} & (1+r)e^{i\delta_-a}
\end{array}\right)\end{displaymath} (140)
$\displaystyle T_2$ $\displaystyle =$ \begin{displaymath}\frac{1}{2}\left(
\begin{array}{cc}
(1+1/r)e^{-i\delta_-a} & ...
...d \delta_{\pm} \equiv k_2\pm k_1,\quad r\equiv \frac{k_2}{k_1}.\end{displaymath}  

We multiply the matrices $ T_1$ and $ T_2$ in order to obtain $ M=T_1T_2$,
$\displaystyle M$ $\displaystyle =$ \begin{displaymath}\left(
\begin{array}{cc}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\end{displaymath}  
$\displaystyle M_{11}$ $\displaystyle =$ $\displaystyle \frac{1}{4}\left[ \frac{(1+r)^2}{r}e^{-2i\delta_-a} - \frac{(1-r)...
...2+k_2^2)^2}{k_1k_2}e^{-2ik_2a}
-\frac{(k_1^2-k_2^2)^2}{k_1k_2}e^{2ik_2a}\right]$  
  $\displaystyle =$ $\displaystyle e^{2ik_1a}\left[\frac{k_1^2+k_2^2}{2k_1k_2}i\sin(-2k_2a)+\cos(2k_2a)\right]=M_{22}^*$  
$\displaystyle M_{12}$ $\displaystyle =$ $\displaystyle \frac{k_1^2-k_2^2}{4k_1k_2}2i\sin (2k_2a)=-M_{21}.$ (141)

Use $ (k_1^2+k_2^2)^2 =(k_1^2-k_2^2)^2 +4k_1^2k_2^2$ to find
$\displaystyle \vert M_{11}\vert^2 = 1+\frac{(k_1^2-k_2^2)^2}{4k_1^2k_2^2}\sin^2(2k_2a).$     (142)

CASE 1: $ E>V$.

In this case, both $ k_1$ and $ k_2$ are real, and we find

$\displaystyle T=
\frac{1}{\frac{(k_1^2-k_2^2)^2}{4k_1^2k_2^2}\sin^2(2k_2a)+1}=
...
...lpha\sqrt{E/V-1})}{4(E/V)(E/V-1)}},\quad \alpha= \sqrt{\frac{2mVa^2}{\hbar^2}}.$     (143)

CASE 2: $ E<V$.

In this case, $ k_2=i\kappa_2:=i\sqrt{(2m/\hbar^2)(V-E)}$ is complex, and we find

$\displaystyle T= \frac{1}{\frac{(k_1^2+\kappa_2^2)^2}{4k_1^2\kappa_2^2} \sinh^2...
...lpha\sqrt{1-E/V})}{4(E/V)(1-E/V)}},\quad \alpha= \sqrt{\frac{2mVa^2}{\hbar^2}},$     (144)

where we used
$\displaystyle \sin ix = \frac{1}{2i}\left(e^{iix} -e^{-iix}\right) = i \sinh x.$     (145)


next up previous contents
Next: The tunnel barrier: Discussion Up: The Tunnel Effect and Previous: Potential step   Contents
Tobias Brandes 2004-02-04