next up previous contents
Next: Case of no potential Up: Wave Mechanics Previous: The tunnel barrier: Discussion   Contents


A more complicated case

We consider a particle of mass $ m$ confined in a one-dimensional potential well with infinitely high walls at $ x=\pm L/2$. Within the well, i.e. within the interval $ [-a/2,a/2]$, $ a<L$, there is a symmetric potential $ V(x)=V(-x)>0$, see Fig. 2.3.

Figure: Left: Symmetric potential $ V(x)$ within a one-dimensional potential well. Right: special case of a rectangular potential.
\begin{figure}\unitlength1cm
\begin{picture}(12,5)
\epsfxsize =6cm
\put(0.0,0.5)...
...
\epsfxsize =6cm
\put(6.5,0.5){\epsfbox{splitpot.eps}}
\end{picture}\end{figure}
We wish to determine the stationary bound states with energy $ E$ and the possible energy eigenvalues $ E$ for this potential. Because the potential is symmetric around the origin, the eigenstate wave functions must have even or odd parity $ \psi_{\pm}(x)=\pm\psi(-x)$. For $ \vert x\vert>a/2$, the wave function must be a superposition of plane waves that has to vanish at the boundaries $ \pm L/2$. Therefore, we can set
\begin{displaymath}\psi_{\pm}(x)=\left \{
\begin{array}{cc}
A \sin k(x+L/2)= a_1...
...L/2-x)= a_3e^{ikx}+b_3e^{-ikx} & a/2 <x<L/2
\end{array}\right.,\end{displaymath}     (147)

where $ A$ is a complex constant, $ k=\sqrt{(2m/\hbar^2)E}$ and $ \phi_{\pm}(x)$ the wave function within the potential region $ \vert x\vert<a/2$. It is convenient to write the even ($ +$) and odd ($ -$) wave functions within one line, using the definitions
$\displaystyle \psi_{\pm}(x)$ $\displaystyle =$ $\displaystyle \psi_{L}(x)+\phi_{\pm}(x) \pm \psi_{R}(x),$  
$\displaystyle \psi_{L}(x)$ $\displaystyle :=$ \begin{displaymath}\left \{
\begin{array}{cc}
A \sin k(x+L/2)= & -L/2<x<-a/2 \\
0 & else
\end{array}\right.\end{displaymath}  
$\displaystyle \psi_{R}(x)$ $\displaystyle :=$ \begin{displaymath}\left \{
\begin{array}{cc}
A \sin k(L/2-x)= & a/2<x<L/2 \\
0 & else
\end{array}\right.\end{displaymath} (148)

Here, $ \psi_L(x)$ is localized only in the left part $ x<-a/2$ and $ \psi_R(x)$ is localized only in the right part $ x>a/2$ of the well.

We now use our transfer matrix formalism to obtain the equation that determines the possible energy values $ E$: The solution on the left of the potential $ V(x)$ is connected to the solution on the right, cf. eq. (2.54),

\begin{displaymath}\left(
\begin{array}{c}
a_1 \\
b_1
\end{array}\right)=
\left...
...{array}{c}
\mp e^{-ikL/2} \\
\pm e^{ikL/2}
\end{array}\right).\end{displaymath}      

Using
$\displaystyle \sin k(L/2+x)$ $\displaystyle =$ $\displaystyle \frac{1}{2i}\left(e^{ik(L/2+x)} - e^{-ik(L/2+x)}\right)$  
$\displaystyle \sin k(L/2-x)$ $\displaystyle =$ $\displaystyle \frac{1}{2i}\left(e^{ik(L/2-x)} - e^{-ik(L/2-x)}\right),$ (149)

we identify
$\displaystyle a_1$ $\displaystyle =$ $\displaystyle \frac{A}{2i} e^{ikL/2},\quad b_1 = -\frac{A}{2i} e^{-ikL/2}$  
$\displaystyle a_3$ $\displaystyle =$ $\displaystyle \mp \frac{A}{2i} e^{-ikL/2},\quad b_3 = \pm \frac{A}{2i} e^{ikL/2},$ (150)

which yields two linear equations
$\displaystyle e^{ikL/2} = \mp M_{11}e^{-ikL/2} \pm M_{12}e^{ikL/2}$      
$\displaystyle - e^{-ikL/2}= \mp M_{12}^* e^{-ikL/2} \pm M_{22} e^{ikL/2}.$     (151)

Here, the upper sign always holds for the even solution $ \psi_+(x)$ while the lower sign holds for the odd solution $ \psi_-(x)$. In fact, for a symmetric potential $ V(x)=V(-x)$, $ M_{22}^*=M_{11}$ and $ M_{21}=M_{12}$ such that the second of the above equations is just the conjugate complex of the first. The condition that determines the possible wave vectors $ k$ and therewith the energies $ E=\hbar^2k^2/2m$ is
$\displaystyle \pm 1 = -M_{11}(k)e^{-ikL} + M_{12}(k),$     (152)

where we explicitly indicated the $ k$-dependence of the transfer matrix elements.



Subsections
next up previous contents
Next: Case of no potential Up: Wave Mechanics Previous: The tunnel barrier: Discussion   Contents
Tobias Brandes 2004-02-04